
iGesture: A General Gesture
Recognition Framework

Diploma Thesis

Ueli Kurmann
<kurmannu@ethz.ch>

Prof. Dr. Moira C. Norrie
Dr. Beat Signer

Global Information Systems Group
Institute of Information Systems

Department of Computer Science

9th January 2007

Copyright © 2007 Global Information Systems Group.

Abstract

Gestures have high potential to be used in paper and pen-based user interfaces. However,
so far there exists no framework that on the one hand is powerful enough to satisfy the re-
quirements of recent applications and on the other hand is easy to integrate. We provide an
overview of existing approaches and present iGesture, our new solution to solve this prob-
lem. iGesture is a Java-based extensible framework and a set of related tools for gesture
recognition, the creation and management of gestures as well as the evaluation of recogni-
tion algorithms. As part of the project, we described and implemented two existing and a
new algorithm. The existing algorithms were extended to improve their recognition quality.
All algorithms have been tested with different kind of gesture sets and users proving that
our framework is sound. Finally, high recognition rates are achieved using our improved
algorithms introduced in this thesis.

iii

iv

Contents

1 Introduction 1

2 Related Work 3
2.1 Specifying Gestures by Example . 4
2.2 SATIN: A Toolkit for Informal Ink-based Applications 4
2.3 quill: Providing Advice for Pen-based Gesture Design 5
2.4 SketchREAD: A Multi-Domain Sketch Recognition Engine 6
2.5 LipiTk: A Generic Toolkit for Online Handwriting Recognition 6
2.6 Microsoft Tablet PC SDK . 6
2.7 SwingGestures . 7
2.8 Design and Analysis of Delimiters for Selection-Action Pen Gesture

Phrases in Scriboli . 7
2.9 PapierCraft: A System for Interactive Paper 8
2.10 Summary . 9

3 Implementation 11
3.1 Gesture Representation . 12
3.2 Recognition Algorithm . 13
3.3 Return Values . 14
3.4 Event Manager . 15
3.5 Recogniser . 15
3.6 Persistence Mechanism . 16
3.7 Management Console . 17

3.7.1 Test Bench Tab . 18
3.7.2 Admin Tab . 19
3.7.3 Test Data Tab . 20
3.7.4 Property File . 20

3.8 Batch Processing . 21
3.8.1 Test Configuration . 21

3.9 Name Value Mapping . 22
3.10 org.sigtec.ink.Note . 23
3.11 Dependencies . 23

4 Algorithm 25
4.1 Rubine Algorithm . 25

4.1.1 Implementation . 27
4.2 SiGeR Algorithm . 27

v

vi CONTENTS

4.2.1 Implementation . 28
4.3 Signature Algorithm . 29
4.4 Features . 30

4.4.1 Rubine Features . 30
4.4.2 Single Stroke Features . 33
4.4.3 Multi Stroke Features . 34

5 User Guide 35
5.1 Tool . 35

5.1.1 Capturing Gestures . 36
5.1.2 Managing Gesture Sets and Classes 36
5.1.3 Test Bench . 38
5.1.4 Test Data . 40

5.2 Framework . 41
5.3 Batch Processing . 43

6 Evaluation 45
6.1 Key Figures . 45
6.2 Palm Graffiti . 46

6.2.1 Experiment 1: Graffiti Numbers . 46
6.2.2 Experiment 2: Graffiti Numbers . 47
6.2.3 Experiment 3: Graffiti Letters . 48
6.2.4 Experiment 4: Graffiti Letters . 48
6.2.5 Experiment 5: Graffiti Numbers . 49

6.3 Microsoft Application Gestures . 50
6.3.1 Experiment 6: Microsoft Application Gestures 50

6.4 Multi-Stroke Gestures . 51
6.4.1 Experiment 7: Multi-Stroke Gestures 51
6.4.2 Experiment 8: Multi-Stroke Gestures 51

6.5 Summary . 52

7 Future Work 53

8 Conclusion 55

A Gestures 57
A.1 Palm Graffiti . 57
A.2 Microsoft Application Gestures . 58
A.3 Multi-Stroke Gestures . 64

B XML Schema 65
B.1 org.sigtec.ink.Note . 65
B.2 org.ximtec.configuration.Configuration . 66

C Evaluation Statistics 69
C.1 Experiment 1 . 69

C.1.1 Extended Rubine Algorithm . 69
C.1.2 Original Rubine Algorithm . 70

CONTENTS vii

C.1.3 Signature Algorithm . 71
C.1.4 SiGeR Algorithm . 72

C.2 Experiment 2 . 73
C.2.1 Extended Rubine Algorithm . 73
C.2.2 Original Rubine Algorithm . 74
C.2.3 Signature Algorithm . 75

C.3 Experiment 3 . 76
C.3.1 Extended Rubine Algorithm . 76
C.3.2 Original Rubine Algorithm . 78
C.3.3 Signature Algorithm . 80

C.4 Experiment 4 . 82
C.4.1 Extended Rubine Algorithm . 82
C.4.2 Original Rubine Algorithm . 83
C.4.3 Signature Algorithm . 85

C.5 Experiment 5 . 87
C.5.1 Extended Rubine Algorithm . 87
C.5.2 Original Rubine Algorithm . 88
C.5.3 Signature Algorithm . 89

C.6 Experiment 6 . 90
C.6.1 Extended Rubine Algorithm . 90
C.6.2 Original Rubine Algorithm . 92
C.6.3 Signature Algorithm . 94

C.7 Experiment 7 . 96
C.7.1 Extended Rubine Algorithm . 96
C.7.2 Original Rubine Algorithm . 97
C.7.3 Signature Algorithm . 98

C.8 Experiment 8 . 99
C.8.1 Extended Rubine Algorithm . 99
C.8.2 Original Rubine Algorithm . 100
C.8.3 Signature Algorithm . 101

viii CONTENTS

1
Introduction

The Global Information Systems Group at ETH Zurich provides frameworks for the devel-
opment of pen and paper-based applications. However, so far there is no support for gesture
recognition. Pen gestures are an important technique to execute commands in pen-based
applications and become more relevant in recent projects.

The topic of this diploma thesis was first to analyse existing gesture recognition frameworks
and the corresponding recognition techniques. Based on these investigations a recognition
framework has been developed and tools to create gestures as well as mechanisms to evaluate
and test algorithms have been designed.

The resulting framework provides a simple application programming interface (API) to recog-
nise gestures provided in a specific format. A user application can either handle results di-
rectly or make use of an event manager that executes commands based on recognised gestures.
We have further implemented three different algorithms to be used in the recognition process.

With our new tool, gesture sets can be created and managed. A test-bench enables the manual
testing of algorithms and special functionality is provided to create the test data. Last but not
least we provide tools to evaluate different algorithms and their configurations in batch mode
and visualises the results.

Chapter 2 provides a survey about related work in the area of mouse and pen-based gesture
recognition. Beside research papers different existing frameworks are presented and anal-
ysed. The implementation and architecture of our new gesture recognition framework and
the related tools are described in Chapter 3. We provide class diagrams for important parts of
the architecture and discuss some of our design decisions. Chapter 4 provides theoretical in-
formation about the algorithms and introduces our new features for the classification process.
In the first part two existing and a new algorithm, which was developed as part of this diploma
thesis, are described in detail. The second part proposes enhancements in terms of additional
features for an existing algorithm to improve its quality. The user guide in Chapter 5 explains

1

2

the functionality and usage of the graphical iGesture tool for creating and managing gestures.
With a simple application the usage of the iGesture API is demonstrated and last but not least
the use of the batch tool to evaluate different recognition algorithms is described. Finally,
Chapter 6 defines key figures which can be used to compare different algorithms and their
configuration. We have conducted eight experiments with different gesture sets, training data
and users and the different algorithms have been ranked.

2
Related Work

Gestures are omnipresent in communication between humans and more recently they became
more interesting for the interaction with computers. On the one hand there are the human
hand and body gestures which are recorded with cameras and sensors. On the other hand
there are two dimensional gestures for pen and mouse-based applications which are also the
focus of this thesis.

Pen-based applications became widely adapted with the emergence of PDA computers. A
new kind of user interface was needed because a keyboard was not handy enough for these
small devices. The PDA systems support gesture or handwriting recognition with vendor and
application-specific tools. An early example of such a vendor-specific tool is Palm’s Graffiti
font for handwriting recognition.

The use of pens also became more popular in the field of Tablet PCs mainly pushed by
Microsoft. Consequently, Microsoft provides an SDK to develop applications with gesture-
based user interfaces. However, such interfaces are often not using the full potential of pen-
based solutions since existing mouse and keyboard-based interfaces are just adapted or en-
hanced with some gestures. These adoptions often lead to constrained interfaces with a low
user acceptance.

Another example are CAD applications with graphic-tablet-based gesture support where the
user does not have to change input devices between the drawing and the execution of common
commands such as for example an undo operation. These applications are popular and can
enhance productivity.

In the remaining part of this chapter we present a short overview of existing mouse or pen-
based gesture recognition frameworks and user interfaces.

3

4 2.1. SPECIFYING GESTURES BY EXAMPLE

2.1 Specifying Gestures by Example

Specifying Gestures by Example [20] was published by Rubine in 1991. It describes
GRANDMA (Gesture Recognizers Automated in a Novel Direct Manipulation Architecture),
an object-oriented toolkit for rapidly adding gestures to direct manipulation interfaces and
introduces a specific classification algorithm.

The idea behind this project is the creation of gestures by example. In this context a gesture
is a two dimensional sketch or symbol drawn with a computer mouse. Gesture by example
means that a specific gesture, also termed gesture class, is described by some sample gestures
and does not require any further programmatic adaption of the recognition algorithm. The
algorithm itself is therefore independent from the sample sets defining the gestures.

The set of gesture classes used for the recognition process is called gesture set. A set has to
be defined when the algorithm is initialised. Note that a gesture class may occur in different
gesture sets.

An evaluation shows that the rate of correctly classified gestures depends on the size of the
gesture set and the number of examples provided for each class. For gesture sets with 15 dif-
ferent classes and at least 15 examples per class up to 98% of the test gestures are recognised
correctly. Also sets of 30 classes achieve an error rate of only 3% with 40 examples or 4%
with 15 examples, respectively.

The classification algorithm uses statistical single-stroke gesture recognition based on 13
different features proposed by Rubine. A small change in the gesture should lead only to a
small change in the computed feature value and there should be enough features to distinguish
all gestures of a specific set.

The training problem is to determine the weights for each gesture class and feature based on
a given set of examples. In a first step, the feature vector for each example is computed and
the outcomes are summarised in a mean feature vector for each gesture class. With the help
of a covariance matrix the weights per class and feature can be computed. This computation
has to be done only once during the algorithm’s initialisation phase. Afterwards, an arbitrary
number of gestures can be recognised with a simple linear computation per class. Because a
linear classifier will always find a gesture which matches best, a mechanism to reject input
is necessary. If two gestures have nearly the same classification value or a test gesture is
detected as outlier, the input should be rejected.

The publication by Rubine is well known in the gesture recognition research area and it is
cited by many later papers.

2.2 SATIN: A Toolkit for Informal Ink-based Applications

Hong and Landay proposed SATIN [14], a toolkit for informal ink-based applications. SATIN
is an open source project available at Sourceforge [7] and is written in Java. It provides var-
ious components including different recognisers and an interpreter that supports the creation
of pen-based applications.

CHAPTER 2. RELATED WORK 5

As part of the project they did a survey of existing pen-based applications and extracted
common functionality such as input as ink, input as gestures, input for selecting and moving,
interpreters that act on ink input or the transformation of ink to cleaned-up objects.

For the recognition process, SATIN uses the Rubine algorithm. The recogniser is responsible
for the classification only, whereas interpreters perform actions based on the input. There
are two kinds of interpreters: the gesture interpreters to execute commands and the ink inter-
preters which clean up the input and display the result.

A new concept of SATIN is the multi-interpreter. This is a collection of different interpreters
combined with policies to decide which concrete interpreter should be used. A default multi-
interpreter iterates over the algorithms and stops as soon as one of them returns a result.

SATIN uses a tree-like data structure to arrange graphical objects which are defined by mul-
tiple strokes, the simplest primitive graphical object. Graphical objects have two dimensional
coordinates as well as a layer coordinate to arrange them on them z-axis.

An important part of SATIN is the extension and optimisation of Java Swing components for
pen-based applications. A new component is the pie menu to replace common popup menus.
Furthermore, SATIN provides tools for manipulating strokes and an algorithm is proposed to
simplify strokes by removing non relevant points to speed up an application’s performance.

Two sample applications have been implemented with SATIN. One of them is DENIM, a
sketch-based website design tool. The other is SketchySPICE which is a simple circuit CAD
tool. Both use a pen as the primary input device.

Unfortunately, SATIN is no longer maintained since 2001.

2.3 quill: Providing Advice for Pen-based Gesture Design

quill [16] is a toolkit to design gestures and has been developed by Long, Landay and Rowe.
A problem of gesture-based interfaces is often the similarity of gestures by what it is difficult
to develop recognisers with a low error rate. quill, which is based on gdt (gesture design
tool) [17], supports the gesture designer with advices when two different gestures are am-
biguous either for humans or recognisers.

They did various studies about the user acceptance of gesture-based applications and found
out that users like the concept of gesture-based user interfaces. Furthermore, they recognised
that users wanted gestures to be easy to memorise and more fault-tolerated in terms of the
recognition.

To measure the similarity and how memorisable a gesture is for a user Long et al. constructed
a computational model based on geometric gesture features. This model allows quill to pre-
dict when people will perceive gestures to be very similar and therefore may have problems
to learn and distinguish.

The most novel feature in quill is the active feedback. The similarity for recognisers and
humans, outlying categories and gestures and the number of misrecognised training examples
is monitored, quill then warns the gesture designer about these problems and assists them with
textual advices to create more reliable gestures.

6 2.4. SKETCHREAD: A MULTI-DOMAIN SKETCH RECOGNITION ENGINE

2.4 SketchREAD: A Multi-Domain Sketch Recognition Engine

SketchREAD [11] is a multi-domain sketch recognition engine developed by Alvarado and
Davis. The engine enables the recognition of two dimensional hand-drawn diagrammatic
sketches. The strokes that a user draws are interpreted as objects in a domain of interests.

The information about basic shapes is separated from the interpretation in a certain domain.
This has the advantage that recognisers can be reused in different domains. For the recogni-
tion dynamically constructed Bayesian networks are used. These networks are influenced not
only by strokes but also by higher-level shape information.

SketchREAD uses a hierarchical shape description language to describe the interpretation of
shapes in a specific domain. A shape may consist of subshapes and have several constraints
describing the relationship between them. The context of the shape is also taken into account.
Therefore, a shape may have different interpretations in different contexts.

Two example applications have been implemented based on the SketchREAD framework.
First, there is a family tree application and second an application to draw simple circuit dia-
grams is presented.

2.5 LipiTk: A Generic Toolkit for Online Handwriting Recognition

LipiTk [18] is a generic toolkit for online handwriting recognition and has been developed
by the Hewlett-Packard Laboratories in India. The toolkit aims to simplify the creation and
integration of recognisers for new scripts and should be useful for various user groups. For
researchers it is important to be able to implement and test new algorithms whereas an appli-
cation developer wants a simple API to integrate functionality in applications.

Most of the toolkit is implemented in C++ and runs on both, Linux and MS Windows sys-
tems. It provides generic pre-processing operations as size-normalisation or equidistant re-
sampling. LipiTk is bundled with two recognition algorithms: Subspace-based classification
and Nearest-Neighbour classification. There are also utilities for the data collection and the
evaluation of different algorithms.

LipiTk was released in a first version in April 2006 and is hosted at SourceForge [3]. The
development is still in progress and it has been announced that other pen interfaces should be
added and open standards like InkML should be supported.

2.6 Microsoft Tablet PC SDK

The Microsoft Table PC SDK [5] contains a component for gesture recognition. Thereby
Microsoft distinguish between system and user application gestures [4]. System gestures are
the pen-based equivalent representation of mouse events. With the system gestures the mouse
can be replaced and all mouse actions can be done with the pen. User application gestures
are a set of about 40 gestures proposed by Microsoft to interact with Tablet PC applications.
An overview of these gestures is provided in Appendix A.2.

CHAPTER 2. RELATED WORK 7

Some of these gestures have a fixed interpretation and it is recommended to follow this guide-
lines to prevent confusion. Unfortunately, the recogniser is limited to these gestures and other
gestures can only be integrated by implementing new recognisers.

The recogniser itself has different modes where the developer can decide whether gestures
and ink or only one of them should be recognised. If the recogniser should detect ink and
gestures, only single stroke gestures are possible. On the screen only ink and no gestures are
shown. The recognition is done after each stroke and based on its result an event is fired or
the stroke is interpreted as ink.

Beside gesture recognition, the Tablet PC SDK also supports the recognition of handwritten
text. The SDK is based on Microsoft .NET and depends on Windows XP.

2.7 SwingGestures

SwingGestures [9] is a SourceForge project initiated by Alberto Bengoa Moreno. The frame-
work is targeted to add simple gestures to Java Swing applications. Eight basic gestures,
namely up, down, left, right and the four diagonals are hard coded. Other gestures can only
be constructed out of these basic gestures which limits the power of the framework.

There is a single instance of the GestureCenter which is a kind of a facade to use the frame-
work. Event listeners for specific gestures can be added to and also a simple event system is
implemented to run actions based on the result of the recognition. Due to these architectural
choices the framework is easy to use.

The recogniser itself runs in two modes to support simple and complex gestures and uses a
simple algorithm to classify the gestures. The algorithm compares each mouse event with
the simple or complex gesture set and calculates a fit value. On the basis of these values, the
gesture which matches best is returned.

In our opinion this framework has some drawbacks. First, only a limited number of gestures
can be represented because of the eight basic gestures. For example, gestures with curves
are nearly impossible. Furthermore, the program code has to be adapted each time, when a
new gesture has to be added to the application. Finally, the framework was not designed to
support different algorithms.

SwingGestures was published in 2004 and has not been maintained or extended since then.

2.8 Design and Analysis of Delimiters for Selection-Action Pen
Gesture Phrases in Scriboli

Hineckley, Baudisch, Ramos and Guimbretière analyse delimiters for select-action pen ges-
ture phrases in Scriboli [13]. A select-action gesture phrase is a selection of an object and the
choice of a command executed on that object. The selection is done with a lasso around the
object and the command is chosen from a pie menu. In their work they compare four different
delimiters to separate the selection part from the pie menu.

8 2.9. PAPIERCRAFT: A SYSTEM FOR INTERACTIVE PAPER

The Pigtail uses a small loop to delimit the lasso and the command to execute. The loop inter-
sects the lasso and the part after the intersection describes the command. So the intersection
point is the centre of the pie menu.

The Handle delimiter attaches a small box at the end of the stroke. This box acts as activation
point and the command accordingly is drawn in a second stroke. This method has advantages
in case of selecting complex objects or for the reuse of a selection.

Using the Timeout delimiter, the user has to observe a timeout of 500 ms after the selection
and before the choice of the command. After the timeout the pie menu appears.

The fourth delimiter uses a Button. After the selection, the button is pressed and the command
can be chosen. In the prototype the CTRL key is pressed with the free hand.

Hineckley et al. implemented all four delimiters and did the same experiments to evaluate
time efficiency and error rates. The Handle technique had the best time performance where
the timeout delimiter is slow and only a few testers liked the method with the button because
of difficulties to catch the right moment. Pigtail seems to split the users. Some of them liked
the method because it is intuitive where others could not manage to use it efficiently.

2.9 PapierCraft: A System for Interactive Paper

PapierCraft: A System for Interactive Paper [15] is written by Liao, Guimbretière and Hinck-
ley in a joint work between the University of Maryland and Microsoft Research in Redmond.
They analysed the drawback of computer systems versus traditional paper solutions in terms
of knowledge workers. Printouts have many advantages to arrange information and to net-
work different sources. Unfortunately, these annotations are only available on printouts and
cannot be transferred to digital systems.

The chosen approach considers paper printouts as proxies of digital documents stored in the
computer. As a user interface they used a gesture-based command system. A user can copy
and paste parts from one document into another document, create links or stitch two paper
documents together. As input device they use an Anoto pen and the synchronisation process
executes all recorded commands in the digital version and the result is available in a digital
document browser.

The most important point of PapierCraft was the development of a simple and reliable com-
mand system which respects current paper-based practices. The command system also should
be readable for humans. The only immediately available feedback is the strokes on paper
drawn with the pen. Therefore, the strokes should not only be understandable by computers
but also by the users.

To distinguish between ink and gesture strokes, PapierCraft uses a foot pedal. Whenever the
pedal is pressed during a stroke, it is recognised as gesture. For the distinction between the
scope and command selection Scriboli’s Pigtail approach has been adopted. Five different
scope selectors allow the selection of single words, multiple lines or lassoing whole pas-
sages. The four most commonly used commands are directly available as in Pigtail. Other
commands can be executed by writing down a unique prefix of the command name. Named
commands have the advantage that they are easier to memorise and understand.

CHAPTER 2. RELATED WORK 9

PapierCraft is implemented in C++ and uses the Microsoft Tablet PC SDK and the Anoto
SDK.

2.10 Summary

The frameworks proposed by the different authors do not satisfy the needs of a general gesture
recognition framework for iPaper. Such a framework should be easy to use for application
developers, but also be powerful enough and extendable for upcoming requirements of new
applications.

SwingGestures is too limited to be used as a general gesture recognition framework. Only a
limited set of gestures can be created and the classification algorithm is not reliable enough.
For simple Swing-based Applications it could be useful, but as soon as the set of gestures is
becomes larger it is ineffectual.

Microsoft’s Tablet PC SDK is designed for screen-based applications and implemented for
the .NET environment. Also the limitation to a fixed set of gestures does not make this
platform interesting to elaborate new pen-based user interfaces and applications.

SATIN is powerful but targeted to screen-based applications. A big part of SATIN is not
the gesture recognition itself but rather the interpretation or beautification of strokes to build
ink-based graphical Swing applications. Another drawback is that SATIN has not been main-
tained for the last few years and is still based on Java 1.3.

10 2.10. SUMMARY

3
Implementation

iGesture is developed on the Java 1.6 platform and is based on sigtec [8] and iPaper [21].
sigtec is a library of common tool classes and is used for the ink representation and the XML
functionality whereas iPaper provides access to Anoto-based input devices. Other libraries as
the Apache Jakarta Commons [1] are used and mentioned in Section 3.11. Note that we paid
attention to use only third-party libraries which are available on the basis of an open source
license.

The iGesture framework consists of different partially independent components. Roughly
there is the recogniser, a management console and tools for testing and optimising algorithms
as shown in Figure 3.1. In addition to these components there exist common data structures
and model classes that are used by all parts.

Common Data Structures

Recogniser

Management
Console

Evaluation
Tools

Figure 3.1: iGesture overview

The following sections provide information about the implementation of the framework and
on how the components interact with each other.

11

12 3.1. GESTURE REPRESENTATION

3.1 Gesture Representation

The representation of gestures in the framework is an important design decision and has
implications on all other parts. It was a requirement for the data structures to manage gestures
and groups of gestures. Furthermore, different algorithms need different descriptions of a
gesture. Therefore, it is important that the model classes do not make any assumptions about
specific algorithms or provide algorithm-specific data. Figure 3.2 shows the UML diagram
of our data structure for representing gestures.

+addGestureClass(GestureClass gestureClass) : void
+delGestureClass(GestureClass gestureClass) : void
+getGestureClass(int i) : GestureClass
+getGestureClasses() : List<GestureClass>
+getName() : String
+getSize() : int

GestureSet
+addDescriptor(GestureClassDescriptor descriptor) : void
+removeDescriptor(DescriptorType name) : void
+getDescriptors() : List<GestureClassDescriptor>
+getDescriptor(DescriptorType type) : GestureClassDescriptor
+getName() : String
+setName(String name) : void

GestureClass

+getType() : Class<? extends Descriptor>

«interface»
Descriptor

+addSample(GestureSample sample) : void
+removeSample(GestureSample sample) : void
+getSamples() : List<GestureSample>

SampleDescriptor
+getText() : String

TextDescriptor
+getDigitalObject(int width, int height) : BufferedImage

DigitalDescriptor

+getName() : String
+getNote() : Note

GestureSample

DefaultDescriptor

Figure 3.2: Gesture representation class diagram

GestureClass
The GestureClass class represents an abstract gesture and therefore holds the name of the
class and a list of descriptors characterising it. For example to gather circles as gestures, we
instantiate a new GestureClass and set the name to ’Circle’. The class itself does not hold
any information on how the gesture looks like and needs at least one descriptor characterising
the circle as a graphical object.

GestureSet
The class GestureSet contains a collection of gesture classes. This aggregation is neces-
sary to be able to initialise an algorithm with a specific set of gestures whereas a gesture class
can be a member of different gesture sets.

Descriptor
Descriptor is an interface that all gesture class descriptors have to implement. It does not
specify any methods concerning the retrieval of gesture descriptions and is therefore more a
marker than a functional interface. The idea behind this is that we do not want to limit the
functionality of descriptors and it is not possible to provide methods for arbitrary descriptors
which cannot be specified in advance. Each implementation of an algorithm is responsible
for the necessary type checks and casts to work with the desired descriptor. Therefore, algo-
rithms have to know on which descriptors they can operate and have to check if the necessary
descriptors are available for all classes in the gesture set.

CHAPTER 3. IMPLEMENTATION 13

SampleDescriptor
The SampleDescriptor class implements the Descriptor interface and describes ges-
tures by samples whereas a sample is a instance of a gesture. This descriptor is used for
training-based algorithms.

GestureSample
The GestureSample class is the instance of a gesture. In our case, it contains the time
stamped locations gathered from the input device summarised as a Note [21]. Despite the
stroke detection the data gathered from the input device is not modified. This allows the
algorithms to work on the original data and delegates the preprocessing to them.

TextDescriptor
The TextDescriptor class implements the Descriptor interface and specifies a ges-
ture in terms of text. This could for example be a character string which describes the direc-
tions between characteristic points of the gesture.

DigitalDescriptor
DigitalDescriptor is an abstract class describing the gesture as digital image. This
descriptor is not suitable for the recognition but rather for the digital representation and can
provide a digital image of the gesture. Therefore, our gesture representation is powerful
enough to build design oriented applications. For example, we can draw a circle that is
recognised with the help of another descriptor and the application can then present its digital
version based on the digital descriptor.

3.2 Recognition Algorithm

One of the main goals of iGesture is the support of different algorithms. To provide maximal
flexibility in the design and use of algorithms, we decided to provide a minimal interface
as shown in Figure 3.3. The Algorithm interface has methods for the initialisation, the
recognition, the registration of an event manager and to retrieve possible parameters and their
default values.

An algorithm is initialised with an instance of the Configuration class. This object
contains gesture sets, an event manager and algorithm-specific parameters which are managed
in a name/value collection. The init method throws an exception if the initialisation process
fails. This exception can have different types informing about the specific error that happened.

The configuration object can be managed using the Java API or by importing the data from
an XML document with the structure described in Appendix B.2. The storage in an external
XML file has the advantage that parameters and the gesture sets can be adjusted whiteout
recompiling the application source code. However, the full power of the configuration object
can only be accessed based on the Java API. It is for not possible to set an event manager
within the XML file. However, event managers can be added based on the Java API after
loading the XML file.

The implementation of an algorithm is responsible for the validation of the configuration
object. This means that algorithms have to check if all the necessary parameters have been
set and if all required descriptors are available. If the initialisation process does not throw an
exception, the user can assume that the algorithm is ready to recognise gestures. Furthermore,

14 3.3. RETURN VALUES

+ getSamples(GestureClass gc) : List<GestureSample>

SampleBasedAlgorithm

+init(Configuration configuration) : void
+recognise(Note note) : ResultSet
+addEventManagerListener(EventManager em) : void
+getConfigParameters() : Enum[]
+getDefaultParameter(String name) : String

«interface»
Algorithm

+addGestureSet(GestureSet gestureSet) : void
+getGestureSets() : List<GestureSet>
+removeGestureSet(GestureSet gestureSet) : void
+addAlgorithm(String algorithm) : void
+getAlgorithms() : List<String>
+removeAlgorithm(Algorithm algo) : void
+addAlgorithmParameter(String algo, String name, String value) : void
+getAlogrithmParameters(String name) : HashMap<String, String>
+getParameter(Parameter parameter) : String
+getEventManager() : EventManager
+setEventManager(EventManager eventManager) : void
+getMinAccuracy(): double
+getMinResultSetSize(): double

Configuration

RubineAlgorithmSignatureAlgorithm

+addEventManagerListener(EventManager em) : void
+fireEvent(ResultSet resultSet) : void
+getDefaultParameter(String name) : String

DefaultAlgorithm

SignatureAlgorithm

Figure 3.3: Recognition class diagram

the implementation is obligated to observe the minimal accuracy and the maximal result
set size stored in the configuration object and notifies the event manager about recognised
gestures.

The AlgorithmFactory class provides static methods to create algorithms with a config-
uration instance and uses dynamic class loading to instantiate the algorithms.

3.3 Return Values

The result returned by the recogniser is structured into a result set which contains a list of
results as shown in the class diagram in Figure 3.4. We decided to return a set of possible
results instead of a single one to delegate the selection of specific results to the application
making use of the recogniser. The advantage of this approach is that the application may
choose a result based on additional contextual information about the captured gesture.

+addGestureClass(GestureClass gestureClass) : void
+delGestureClass(GestureClass gestureClass) : void
+getGestureClass(int i) : GestureClass
+getGestureClasses() : List<GestureClass>
+getName() : String
+getNote() : Note
+getSize() : int
+setNote(Note note) : void

ResultSet

+getAccuracy() : double
+getGestureClass() : GestureClass
+getName() : String

Result

Figure 3.4: Class diagram return value

The result set also contains a reference to the original note which was used in the gesture
recognition process. This would not be necessary for the direct use of the gesture set returned
to the application but enables events working on the note. Otherwise they would not be aware
of this information.

CHAPTER 3. IMPLEMENTATION 15

The list of returned results is always ordered by the accuracy of the result or is empty if the
recognition was unsuccessful. To simplify the access to the most likely result a convenience
method is provided which directly returns the first result.

3.4 Event Manager

iGesture has an event manager providing an alternative method to react on recognised ges-
tures in addition to the result set returned by the algorithm. Listeners can be added to an
instance of an algorithm and an event manager is notified after each recognition process as
shown in Figure 3.5.

+registerEvent(String className, Event event) : void
+fireEvent(ResultSet resultSet) : void

EventManager

+run(ResultSet resultSet) : void

«interface»
EventHandler

Figure 3.5: EventManager class diagram

An event manager has advantages compared to the processing of result sets by the caller in
terms of executing different actions based on the result. Thereby, it is not necessary to imple-
ment different behaviour for various results on the client side which reduces code complexity.

After a notification has been triggered by an algorithm the event manager looks up in the
event table if the recognised gesture is bound to an action. If so, the action is executed by the
event manager.

Actions have to implement the EventHandler interface demanding for a runmethod with
a ResultSet as parameter.

To be more flexible, the event manager contains instantiated objects. This has the advantage
that the implementation of an event can be constructed with arbitrary parameters and therefore
it is able to operate on all application data.

By definition, the algorithm has to notify the event manager after each call of the recognise
method.

3.5 Recogniser

The Recogniser class shown in Figure 3.6 is the front end of the framework and hides
the complexity with a facade [12]. An application developer using iGesture does not have to
bother about the classes in the background. They only have to define an XML configuration
file as shown in Listing B.2, create a gesture set and use the Recogniser to recognise
gestures. In general, the recogniser is instantiated with a configuration object containing
information about the algorithms to be used. To make the recogniser more comfortable we
provide a broad set of constructors which allow to pass the configuration files directly.

A configuration object may have multiple algorithms for the recognition process. The recog-
niser provides two methods which have a different behaviour regarding to the use of multiple

16 3.6. PERSISTENCE MECHANISM

+Recogniser(Configuration c)
+Recogniser(Configuration c, EventManager em)
+Recogniser(Configuration c, GestureSet gs)
+Recogniser(File cf) {
+Recogniser(File cf, File sf, EventManager em)
+recognise(Note note) : ResultSet
+recogniseSerial(Note note) : ResultSet
+recognise(GestureSample sample) : ResultSet

Recogniser

Figure 3.6: Recogniser class diagram

algorithms. The recognise(Note note) method goes through the algorithms in se-
quential order and stops the recognition process as soon as one algorithm returns a valid
result whereas the recognise(Note note, boolean recogniseAll) method
combines the results returned by different algorithms.

For instance, there is an application which recognises handwritten text and reacts on com-
mand gestures. For both tasks a different recognition algorithm is needed. These two al-
gorithms are executed in serial order where the first recognises commands and the second
recognises handwritten text. We draw the sign to delete a text block. So the first algorithm
will recognise the gesture and the recogniser stops. Afterwards a note representing a word
is processed. The first algorithm fails to recognise the input and so the second algorithm
recognises it as handwritten text.

The problem of the second method is the order of the result set. The results have an accuracy
value but this value is computed by the algorithm and it cannot be assumed that the accuracy
of different algorithms has the same meaning. Therefore, the result with the highest accuracy
value does not have to be the best result.

3.6 Persistence Mechanism

The StorageManager encapsulates the access to persistent data objects and uses a re-
alisation of the StorageEngine interface to interact with the data source. As shown in
Figure 3.7, the StorageEngine interface requests the four basic functions to create, read,
update and delete data objects (CRUD).

XMLStorageEngine

+load(Class<T> clazz, String id) : <T extends DataObject> T
+load(Class<T> clazz) : <T extends DataObject> List<T>
+store(DataObject dataObjects) : void
+update(DataObject obj) : void
+remove(DataObject ojb) : void
+void dispose() : void

«interface»
StorageEngine+load(Class<T> clazz, String id) : <T extends DataObject> T

+load(Class<T> clazz) : <T extends DataObject> List<T>
+remove(DataObject obj) : void
+store(DataObject dataObjects) : void
+store(List<DataObject> dataObjects) : void
+update(DataObject obj) : void
+update(List<DataObject> list) : void
+generateUUID() : String
+dispose() : void

StorageManager

Db4oStorageEngine

Figure 3.7: Storage Manager UML diagram

CHAPTER 3. IMPLEMENTATION 17

In contrast, the storage manager provides an extended version of the CRUD methods and
would also allow to cache data to prevent continuous updates while using data sources which
cannot store data on object level.

Persistent objects have to implement the DataObject interface shown in Figure 3.8. It
demands for an universally unique identifier which is used for the identification of persistent
objects as for example in XML documents. Not all persistent storage engines need such an
identifier but anyway it simplifies the use of different storage engines.

GestureSet

+getID() : String
+setID(String id) : void

«interface»
DataObject

GestureClass ...

DefaultDataObject

Figure 3.8: DataObject UML diagram

We decided to use db4objects [2] as the primary storage container which is an ob-
ject oriented database and among others available under the GPL license. The class
db4oStorageEngine implements the StorageEngine interface and realises the ac-
cess to db4objects.

The second storage engine is implemented in the class XMLStorageEngine and serialises
the data objects into an XML document. For the serialisation process we use the open source
library x-stream [10] which is able to serialise/deserialise arbitrary Java objects and therefore
enormously simplifies the implementation.

To support the transformation of different persistent data sources we can instantiate two in-
stances of the storage manager with different storage engines and copy data from one to the
other data source.

3.7 Management Console

The management console of iGesture is a Java Swing application and basically consists of
three parts to define gestures, test them manually and a tool to create test sets. The application
is implemented using the MVC pattern [12] and is extendable for additional functionality.

The backbone is the model class GestureMainModel. It provides access to data objects
and uses the StorageManager to make them persistence. Beside that, the main model
provides a set of listeners where views can register to be informed about changed data. Also
other component models are based on the main model and so it is the only instance holding
data and all alterations are propagated to it. Furthermore, the main model provides access to
registered input devices.

The main model is initialised with a StorageEngine and a list of input devices. The fact
that input devices are passed to the constructor allows the use of different input devices.

18 3.7. MANAGEMENT CONSOLE

The most recent note that has been captured by the input device is stored in the main model
and a listener informs registered views when it is altered. To prevent the destruction of the
note by any views, the getter method always returns a clone of the original note. To pass the
original reference would lead to non deterministic behaviour because some operations on the
note change the note itself.

The management tool is structured into different tabs. Each tab contains functionality for a
specific task and different tabs do not have any dependencies. This design decision has the
advantage that new tabs can be added in a simple manner. The tabs are not hard coded in the
main view and have to extend the abstract class GestureTab. The list of tabs is passed to
the constructor of the main view and it creates the instances of the tabs using dynamic class
loading and shows them in the order given by the list. This allows adding new tabs without a
recompilation of the main view. The list of tabs is stored in a global property file.

A tab has a JDesktopPane as basis and all other components are attached to it. The
existing implementations use JInternalFrames as main components on the base pane.
The GuiFactory furthermore provides static methods to simplify the creation and reuse of
components.

3.7.1 Test Bench Tab

The Test Bench Tab shown in Figure 3.9 provides functionality to acquire a gesture from the
input device and recognise it with the gesture set and algorithm of the user’s choice. This
enables a simple and quick test of specific gestures. All gesture sets of the currently opened
database are available and the algorithms can be selected. The available algorithms have to be
set in the global property file in a comma delimited list. For the recognition process default
parameters are used.

Figure 3.9: Test bench tab screenshot

CHAPTER 3. IMPLEMENTATION 19

3.7.2 Admin Tab

The Admin Tab enables us to administrate gesture sets, classes and descriptors. This view as
shown in Figure 3.10 has three main components which are always visible. These are a frame
for capturing gestures, a list of all available classes and a tree structure to manage the sets.

Figure 3.10: Screenshot admin tab

Gesture classes can be created, edited and deleted in the list. These operations are accessible
over a context menu. For editing a gesture class, a new frame opens and lists the existent
descriptors. Again the three basic functions create, edit and delete are applicable on the
descriptors.

To manipulate a descriptor another frame opens. At the moment we only have an implemen-
tation for a sample-based descriptor providing functionality to add and delete gesture samples
in a list. To add a sample, the gesture needs to be gathered with the capture component and it
can be copied to the list of samples.

The tree representing the gesture sets and the containing classes has several context menus
for the operations create, delete, export and import a gesture set and to add gesture classes.
For adding classes to the set, another window pops up to select classes from the list.

The export and import functionality of set level allows creating and reading XML files con-
taining the set and the corresponding classes with their descriptors. These files can be used
for initialising the recogniser and makes it therefore independent of the storage manager.

20 3.7. MANAGEMENT CONSOLE

3.7.3 Test Data Tab

The Test Data Tab shown in Figure 3.11 can be used to create test sets for testing algorithms
and their configuration. It also has a capture component, a list of available test sets and a
frame to select the gesture class the input belongs to.

Figure 3.11: Screenshot test tab

Test sets can be created, edited and deleted. Furthermore, we provide functionality to export
and import test sets from the corresponding XML representation.

3.7.4 Property File

The management console is configured with a Java property file. It contains all parameters
of the application which can be set dynamically. Another resource file provides language
dependent names and identifier used for the graphical user interface.

The global configuration file is named igestureTool.properties and contains the following
parameter definitions:

• Path to the input device property file

• List of tabs to be shown

• Filename of the database

• List of available algorithms

All this parameters are mandatory to run the iGesture tool. An example of a configuration file
is shown in Figure 3.12.

CHAPTER 3. IMPLEMENTATION 21

INPUT_DEVICE_CONFIG = magicommPen.properties

TABS = org.ximtec.igesture.tool.CaptureTab, \
org.ximtec.igesture.tool.AdminTab, \
org.ximtec.igesture.tool.TestTab

ALGORITHM = org.ximtec.igesture.algorithm.rubine.RubineAlgorithm, \
org.ximtec.igesture.algorithm.signature.SignatureAlgorithm, \
org.ximtec.igesture.algorithm.siger.SigerRecogniser

DATABASE = igesture.db

Figure 3.12: Property file igestureTool.properties

3.8 Batch Processing

iGestures provides a tool to test and evaluate different recognition algorithms. The idea be-
hind this tool is to simplify the evaluation of newly developed algorithms and the comparison
of different algorithms. Beside the comparison it allows us to test a specific algorithm with
different parameters to adjust them in the best possible way for a given gesture set. Figure
3.13 shows the main classes belonging to the batch process handling.

+getPrecisionI() : double
+getPrecsisonII() : double
+getBlindness(): double
+getImpreciseness(): double
+setStartTime() : void
+setEndTime() : void
+getRunningTime() : long
+getConfiguration(): Configuration

TestResult

+addResult(BatchResult r) : List<BatchResult>
+getBatchResults() : List<BatchResult>

TestResultSet
+addSample(GestureSample sample) : void
+addSamples(List<GestureSample> samples) : void
+addGestureSet(GestureSet set) : void
+addGestureSets(List<GestureSet> sets) : void
+run() : BatchResultSet
+importXML(File file) : BatchProcessContainer
+createConfigurations(File file) : List<Configuration>

BatchProcess

Figure 3.13: BatchProcess class diagram

A gesture test set is encapsulated in a TestSet instance which consists of a set of
GestureSample instances. Each instance contains the name of the gesture class the sam-
ple belongs to or the name is empty, if the gesture does not exist in the gesture set. This
naming is necessary to check whether the input was recognised correctly.

3.8.1 Test Configuration

A batch process is configured with an XML file and out of it the different configuration objects
are created. To be able to test different parameter adjustments we provide a mechanism to
define various parameters.

22 3.9. NAME VALUE MAPPING

As usual it is possible to set a parameter to a fixed value. This is realised with the following
XML construct:

<parameter name="MIN_ACCURACCY">
<value>0.85</value>

</parameter>

Then we can define a sequence of values a parameter can have. This is done as follows:

<parameter name="RESULTSET_SIZE">
<sequence>
<value>1</value>
<value>8</value>

</sequence>
</parameter>

The next construct acts like a for-loop. Each value in the given sequence is taken as a param-
eter. All three arguments are processed as double values.

<parameter name="MIN_DISTANCE">
<for start="1" end="3.5" step="0.5"/>

</parameter>

The last construct creates the power-set of the specified length out of a comma delimited list.
The two parameters min and max denotes the minimal and maximal length of the created
power-set. The power-set of a list has 2List.length elements in general.

<parameter name="FEATURE_LIST">
<powerset min="4" max="6">F1,F2,F3,F4,F5,F6</powerset>

</parameter>

Out of this XML configuration file all possible parameter permutations are collected. For
each configuration the batch process instantiates the algorithm and processes the test set. The
results of the batch process are collected in a TestSetResult data structure. For each
configuration the key figures are computed and collected.

Note that this batch process may be very memory and time consuming.

3.9 Name Value Mapping

To realise a mapping between gesture classes and an integer as identifier we provide a helper
class named Mapping. The idea of this mapping is to be able to use switch statements to
handle actions triggered by a gesture.

The mapping between the name and the value is managed in an XML file which uses the
schema shown in Appendix B.3.

Mapping is a static class to be able to access the identifiers directly. Although the class is
static, it has to be initialised with the filename of the mapping. If the class is not initialised, a
runtime exception is thrown.

CHAPTER 3. IMPLEMENTATION 23

3.10 org.sigtec.ink.Note

iGesture uses the org.sigtec.ink.Note class to represent gestures captured from an
input device. A Note consists of Traces defined by time stamped Points. Beside the
coordinates and the timestamp a point can contain additional information such as the force,
rotation, pitch and yaw. The schema of the XML note representation is shown in Listing B.1.

3.11 Dependencies

The libraries listed in the following table are used by iGesture.

Name Filename License
Bloat bloat-1.0.jar GNU
db4objects db4o-5.5-java5.jar GPL
db4objects db4o-5.5-nqopt.jar GPL
iPaper ipaper.jar ETH
iText itext-1.4.8.jar MPL
Jakarta Commons CLI commons-cli-1.0.jar Apache 2.0
Jakarta Commons Collections commons-collections-3.1.jar Apache 2.0
Jakarta Mathematics Library commons-math-1.1.jar Apache 2.0
Jdom jdom.jar Apache Style
Jdom Contributions jdom-contrib.jar Apache Style
NativeCall NativeCall.dll BSD
NativeCall nativecall-0.4.1.jar BSD
NativeCall nativeloader-200505172341.jar BSD
OfficeLnFs officeLnFs 1.1.2.jar BSD
sigtec sigtec.jar ETH
Spline spline.jar LGPL
Universal Java XPath Engine jaxen-1.1-beta-11.jar Apache Style
UUID Specification jug-asl-2.0.0.jar Apache 2.0
Xalan xalan.jar Apache 2.0
xstream xstream-1.2.jar BSD

24 3.11. DEPENDENCIES

4
Algorithm

4.1 Rubine Algorithm

The Rubine algorithm introduced in Section 2.1 was developed in 1991 and represented one
of the first algorithms published for the recognition of mouse and pen-based gestures. An
important feature of this algorithm is that gestures are not described programmatically but
learnt by examples. With the appropriate tools, such as the management console of iGes-
ture, it becomes a simple and quick task to create new gestures and add them to the gesture
recognition engine.

Features are extracted from the gestures consisting of time stamped points and used in the
recognition process. The classification itself does not depend on specific features which
allows us to use it for different recognition tasks as long as it is possible to describe the
classifiable objects by feature vectors.

In a first step for each example gesture e the feature vector f is computed based on the
selected features F . These vectors are then summarised in a mean vector per gesture class ĉ .
This mean vector f̄ is simply the average of the classes’ example feature vectors as illustrated
in Equation 4.1.

f̄ĉi =
1
Eĉ

Eĉ−1∑
e=0

fĉei (4.1)

On the basis of these vectors the covariance matrix Mĉ shown in Equation 4.2 is computed for
each gesture class and these covariance matrices are averaged to a single covariance matrix
M shown in Equation 4.3. With this single covariance matrix it is possible to estimate the
weights ωĉj of the vector components shown in Equation 4.4 and the initial weight ωĉ0 for
each gesture class as illustrated in Equation 4.5.

25

26 4.1. RUBINE ALGORITHM

Mĉij =
Eĉ−1∑
e=0

(
fĉei − f̄ĉi

) (
fĉej − f̄ĉj

)
(4.2)

Mij =

∑C−1
c=0

Mĉij

Eĉ−1

−C +
∑C−1

c=0 Eĉ

(4.3)

ωĉj =
F∑

i=1

(
M−1

)
ij

f̄ĉi (4.4)

ωĉ0 = −1
2

F∑
i=1

ωĉif̄ĉi (4.5)

All these steps can be done during the initialisation phase of the algorithm and the weights
computed per gesture class do not change during classifications.

The classification itself is realised with the linear function shown in Equation 4.6. For an
input gesture the feature vector with the same features is computed and each component of
this vector is multiplied with the corresponding weight of the gesture class. The gesture class
which yields the maximal value denotes the classified gesture.

υĉ = ωĉ0 +
F∑

i=1

ωĉifi (4.6)

This kind of classification has the problem that a result always will be returned even if the
input gestures does not have any similarities with a trained example gesture. Therefore,
mechanisms are required to reject gestures which are not similar to the trained ones or when
several gestures classes have a similar probability to be selected and therefore the result is
ambiguous.

To check whether the result is non-ambiguous the classification sums of the gesture classes
are compared with the classified gestures class illustrated in Equation 4.7. If several classes
are near this maximum class, it is assumed that the result is ambiguous. The border for this
decision can be set by a specific parameter.

P̃
(
î|g

)
=

1∑C−1
j=0 e(vj−vi)

(4.7)

To detect outliers the Mahalanobis distance [19] introduced in Equation 4.8 is used.

δ2 =
F∑

j=1

F∑
k=1

(
M−1

)
jk

(
fj − f̄ij

) (
fk − f̄ik

)
(4.8)

CHAPTER 4. ALGORITHM 27

4.1.1 Implementation

We implemented this algorithm as described in Rubin’s paper and the following parameters
can be set with the configuration object.

Parameter name Description
MIN DISTANCE The minimal distance denotes the minimal space be-

tween two succeeding points of a gesture. Succeeding
points which are too close may have a negative influ-
ence for the computation of particular features and are
not meaningful in the context of the entire gesture.

FEATURE LIST A feature has to implement the Feature interface.
This parameter holds a list of comma separated full
qualified class names of feature objects. These classes
are instantiated during the initialisation of the algo-
rithm using dynamic class loading.

MAHALANOBIS DISTANCE This parameter holds the maximal distance an input
gesture can have so that it is not detected as outlier.
Rubine proposed to use half of the squared number of
features as value for this parameter, but in practise this
value seems to be too small.

AMBIGUITY This parameter is used to prevent ambiguous results.
Rubine proposes to reject results which have a value
lower than 0.95.

4.2 SiGeR Algorithm

The SiGeR (Simple Gesture Recogniser) algorithm was developed by Scott Swigart for the
Microsoft Developer Network to illustrate the implementation of custom gesture recognisers
for the Microsoft Tablet PC platform. The algorithm classifies gestures on the basis of regular
expressions.

Gestures are described with the eight cardinal points (N, NE, E, SE, S, SW, W and
NW) and some statistical information. Out of this description a regular expression is created.
These regular expressions are applied to input gestures and if a class description matches the
input string, the gesture class is recognised as result. Therefore the classification is binary
and it is not possible to rate different results.

For example the gesture shown in Figure 4.1, starting at the red dot, can be described with
the following character string: E, N, W, S. Out of these characters the regular expres-
sion (E)+(N)+(W)+(S)+ can be created. Because hand drawn lines may not be always
straight, the author proposed a more general form of the regular expression which also ac-
cepts neighbouring distances. So the extended regular expression for this example gesture
would be (NE|E|SE)+(NW|N|NE)+(SW|W|NW)+(SE|S|SW)+.

The input gesture is transformed into a character string and the distance between two points
is approximated with the directions corresponding to the cardinal points. Additionally,
statistical information is extracted out of the input gesture. Therefore each direction is

28 4.2. SIGER ALGORITHM

N

W

S

E

Figure 4.1: Example Gesture

counted and information about the proportion of the directions is provided. The proxim-
ity of the start and endpoints and the number of stop points is counted to enabling a more
reliable description of gestures.

The description of gesture classes may set constraints concerning this statistical information.
For example for a circle we can set constraints that there need to be equally many straight and
diagonal elements and that the start- and endpoint of the gesture are close together.

Start- and endpoints of strokes may contain scar points which do not belong to the gesture
itself and can be removed. For this reason the regular expression is extended allowing some
points at the beginning and at the end not described in the gesture class description. During
the recognition process gestures may also be flipped and mirrored to enable different draw-
ings.

SiGeR was originally implemented in VB.NET and hosted as open source project at Source-
forge. For each gesture class an implementation of an interface is necessary to describe it
programmatically.

4.2.1 Implementation

Our implementation differs in some points from the original SiGeR version. The most impor-
tant change is the possibility to describe gesture classes in textual form using some keywords
to describe the directions and to make use of the statistical information. This allows us to use
the existing text descriptor for gesture classes.

Gestures are described using the following language:

Description = Directions [";" Constraints];
Directions = Direction ["," Directions];
Direction = "N"|"NE"|"E"|"SE"|"S"|"SW"|"W"|"NW";
Constraints = Constraint ["AND" Constraints];
Constraint = Operand Operator Operand;
Operator = "EQ"|"NEQ"|"GT"|"GTE"|"LT"|"LTE";
Operand = "N"|"NE"|"E"|"SE"|"S"|"SW"|"W"|"NW"|"DIAGONAL"|
"STRAIGHT"|"PROXIMITY"|"STOPPOINTS";

CHAPTER 4. ALGORITHM 29

For example a rectangle would be described as E,N,W,S;STRAIGHT GT 0.8 AND
PROXIMITY LT 0.2. The part before the semicolon describes the form of the rectan-
gle with the directions. The two constraints state that at least 80% of the directions have to be
straight and that the start and endpoint is in maximum 20% of the gesture diagonal distance
away.

The following parameter can be set with the configuration object.

Parameter name Description
MIN DISTANCE The minimal distance denotes the minimal space between two suc-

ceeding points describing a gesture.

4.3 Signature Algorithm

The Signature algorithm was designed as part of this diploma thesis. The idea behind this
algorithm is to approximate gestures with a signature whereas the signature is computed
from example gestures as done in the Rubine algorithm. The signatures are compared based
on distance functions leading to a classification.

For the creation of the signature we use a grid which consists of squares of the same size.
Each square is identified with a bit string and two neighbouring squares always differ in
exactly one bit.

During the preprocessing phase the gestures are stretched to a uniform size and mapped onto
the grid. Each point of the gesture can now be represented with the bit string of its related
square as shown in Figure 4.2. The full signature consists of the concatenation of these bit
strings.

000000 000001 000101 000100 100100 100101 100001 100000

000010 000011 000111 000110 100110 100111 100011 100010

001010 001011 001111 001110 101110 101111 101011 101010

001000 001001 001101 001100 101100 101101 101001 101000

011000 011001 011101 011100 111100 111101 111001 111000

011010 011011 011111 011110 111110 111111 111011 111010

010010 010011 010111 010110 110110 110111 110011 110010

010000 010001 010101 010100 110100 110101 110001 110000

- 64 Quadratische Felder
- Identifiziert durch 6 Bit String
- 2 Bit für weitere Infos

- Einfach mal probieren :-)
- Mit einem Sample beginnen, skalieren auf Feldgrösse, nach 0,0 moven
- Dann für jeden Punkt die "Signatur" ermitteln und zu einem String zusammen hängen.
- Dann mit Hilfe der Manhattan Distanz alles mit allem Vergleichen.
- Je nachdem muss man halt die Distanz vergrössern. Damit für alle gleich lang. Dazu
 zum beispiel einfach der letzte punkt kopieren. irgend etwas spiegeln oder so.

Figure 4.2: Example Grid 8× 8

30 4.4. FEATURES

While mapping the points onto this grid a fuzziness arises. This is furthermore increased in
removing succeeding points which fall in the same square. Thereby, only significant points
will be remaining.

Alternatively, this algorithm uses an mechanism to remove points which do not change the
signature significantly. A point is denoted as irrelevant if the angle of the direction remains
in a defined range.

We implemented two distance functions which can be selected by a parameter. Additional
functions can be added by implementing the DistanceFunction interface.

Hamming Distance
The first function is the Hamming distance. It counts the number of bits which have to be
flipped to make two signatures equal. The drawback of this function is that a displacement
may trigger a lot of after-effects which may lead to bad results.

Levenshtein Distance
The Levenshtein distance is a generalisation of the Hamming distance. Beside the flipping
of bits this measurement is also able to add or remove bits to achieve the smallest possible
distance between two bit strings. Across this fact, after-effects can be minimised. The draw-
back of this function is that signatures might be changed drastically and so the result of the
recognition is falsified.

For each example gesture the signature is created and an input gesture is compared with each
of them. The accuracy of the result denotes the number of coinciding bytes.

The following parameters can be set with the configuration object.

Parameter name Description
GRID SIZE The grid size defines the number of cells the grid should have

within a line.
RASTER SIZE The raster size defines the width of and height a gesture is

stretched to.
DISTANCE FUNCTION The full qualified class name of the distance function. The

class has to implement the DistanceFunction interface.

4.4 Features

This section provides an overview about the implemented features describing gestures. The
first part lists features proposed by Rubine which is followed by new features developed as
part of this diploma thesis.

4.4.1 Rubine Features

The following 13 features are elaborated by Dean Rubine. This are the original features of
his algorithm and all of them are implemented in our framework. Figure 4.3 illustrates some
of this features.

CHAPTER 4. ALGORITHM 31
3.3. FEATURES 51

p
(x0 y0)

(x2 y2)

(xp 1 yp 1)

(xp yp)
(xp+1 yp+1)

(xP 1 yP 1)

(xmin ymin)

(xmax ymax)

f3

f4

f5

Figure 3.2: Feature calculation
Gesture 6 of figure 3.1 is shown with its relevant lengths and angles labeled with the intermediate variables
used to compute features or the features themselves where possible.

f4 = arctan
ymax ymin

xmax xmin

Distance between first and last point:

f5 = (xP 1 x0)2 + (yP 1 y0)2

Cosine and sine of angle between first and last point:

f6 = cos = (xP 1 x0) f5
f7 = sin = (yP 1 y0) f5

Total gesture length:

Let xp = xp+1 xp

yp = yp+1 yp

52 CHAPTER 3. STATISTICAL SINGLE-PATH GESTURE RECOGNITION

f8 =
P 2

p=0

x2
p + y2

p

Total angle traversed (derived from the dot and cross product definitions[73]):

p = arctan
xp yp 1 xp 1 yp

xp xp 1 + yp yp 1

f9 =
P 2

p=1
p

f10 =
P 2

p=1
p

f11 =
P 2

p=1

2
p

Maximum speed (squared):

tp = tp+1 tp

f12 =
P 2
max
p=0

x2
p + y2

p

t2p

Path duration:

f13 = tP 1 t0

Features f12 and f13 allow the gesture recognition to be based on temporal factors; thus gestures
have a dynamic component and are not simply static pictures.

Some features (f1, f2, f6, and f7) are sines or cosines of angles, while others (f5, f10, f11, f12)
depend on angles directly and thus require inverse trigonometric functions to compute. A four-
quadrant arctangent is needed to compute p; the arctangent function must take the numerator and
denominator as separate parameters, returning an angle between and . For efficient recognition,
it would be desirable to use just a single feature to represent an angle, rather than both the sine and
cosine. However, the recognitionalgorithm requires that each feature have approximately a Gaussian
distribution; this poses a problem when a small change in a gesture causes a large change in angle
measurement due to the discontinuity when near . This mattered for initial angle, and the angle
between the start and end point of the gesture, so each of these angles is represented by its sine and
cosine. The bounding box angle is always between 0 and 2 so there was no discontinuity problem
for it.

Figure 4.3: Rubine Features taken from [20]

Cosine and sine of the initial angle with respect to the X axis
These features use x2 instead of x1 because the larger distance between the two points would
be more meaningful. Our implementation automatically takes the next possible point if x2 is
equal to x0.

f1 = cos α =
(x2 − x0)√

(x2 − x0)
2 + (y2 − y0)

2

f2 = sinα =
(y2 − y0)√

(x2 − x0)
2 + (y2 − y0)

2

Length of the bounding box diagonal

f3 =
√

(xmax − xmin)2 + (ymax − ymin)2

We think that this feature can be problematic because gestures do not always have the same
size and the absolute size itself often does not characterise a gesture very well. This problem
can be solved by scaling gestures to a specific size.

Angle of the bounding box

f4 = arctan
ymax − ymin

xmax − xmin

Distance between first and last point

f5 =
√

(xN−1 − x0)
2 + (yN−1 − y0)

2

32 4.4. FEATURES

We think that this feature could be problematic because of the same reason already mentioned
for f3.

Cosine and sine of angle between first and last point

f6 = cos β =
xN−1 − x0

f5

f7 = sinβ =
yN−1 − y0

f5

Total gesture length

∆xi = xi+1 − xi

∆yi = yi+1 − yi

f8 =
N−2∑
i=0

√
∆x2

i + ∆y2
i

We think that this feature could be problematic because of the same reason already mentioned
for f3.

Total angle traversed

Θi = arctan
∆xi∆yi−1 −∆xi−1∆yi

∆xi∆xi−1 + ∆yi∆yi−1

f9 =
N−2∑
i=1

Θi

f10 =
N−2∑
i=1

|Θi|

f11 =
N−2∑
i=1

Θ2
i

We observed that f9 and f10 often yields to the same value. The difference between these
two features only takes effect for gestures containing changes of directions. If features are to
similar, the weights cannot be computed.

CHAPTER 4. ALGORITHM 33

Maximum speed squared

f12 =
N−2
max
i=0

∆x2
i + ∆y2

i

ti+1 − t0

Stroke Duration

f13 = tN−1 − t0

4.4.2 Single Stroke Features

The following new features were developed as part of this diploma thesis. They are an exten-
sion to Rubine’s single stroke features.

Curve of strokes
This feature tests how straight a gesture is.

f14 =

√
(x0 − xN−1)

2 + (y0 − yN−1)
2

f8

Number of stop points
A stop point occurs when the drawing speed falls below a defined lower bound. The average
speed for the whole gesture is computed and the lower bound is set to a third to it. This lower
bound is compared with the velocity between two points. The number of stop points denotes
the number sequences having a speed below the specified lower bound. Usually stop points
appear on directional changes and at the end of strokes.

f15 = |StopPoints|

Proportion of the direction start-/middle-point to the diagonal
This value gives a clue if the first or second part of the gesture is more curvy. To determine
the middle-point we use integer division.

f16 =

√(
x0 − xN/2

)2
+

(
y0 − yN/2

)2

f3

Sine of angle between first and second part of the stroke
This feature describes the change of direction with respect to the middle point of the gesture.

f17 =

(
yN/2 − y0

)
√(

xN/2 − x0

)2
+

(
yN/2 − y0

)2
−

(
yN − yN/2

)
√(

xN − xN/2

)2
+

(
yN − yN/2

)2

Sine of angle between the direction first- to middle-point with respect to the X axis

f18 =

(
yP/2 − y0

)
√(

xP/2 − x0

)2
+

(
yP/2 − y0

)2

34 4.4. FEATURES

Cosine of angle between the direction middle- to end-point with respect to the X axis

f19 = cos α =

(
xP − xP/2

)
√(

xP − xP/2

)2
+

(
yP − yP/2

)2

Proportion Start/Endpoint to Diagonal of the bounding box This feature is a gesture size
independent replacement for feature f5.

f20 =
f5
f3

4.4.3 Multi Stroke Features

To improve the recognition of multi-stroke gestures, we designed some features characteris-
ing them. These features are used in combination with a subset of Rubine’s features.

Number of strokes
This feature denotes the number of strokes a gesture has. If most of the gestures contain the
same number of strokes this feature may not be a good classifier.

f21 = |Strokes|

Sum of distances between strokes
This feature sums up the distances between strokes and informs about the distribution of
them. In order that this feature is size independent the sum is divided by the diagonal of the
bounding box.

f22 =
1
f3

S−1∑
i=1

√(
Si−1xP−1 − Six0

)2 +
(
Si−1yP−1 − Siy0

)2

Angle between strokes
This feature sums up the angles between the strokes. Therefore, the angle for each stroke is
computed with respect to the X axis and subtracted from the previous one. To compute the
angle the stroke is approximated as a direct line from the first to the last point.

f23 =
S−2∑
i=0

Angle between Stroke Si and Si+1

Proportion of stroke length
This feature informs about the proportion of the different strokes.

Si Length =
√(

Six0 − SixP−1

)2 +
(
Siy0 − SiyP−1

)2

f24 = S0 Length

S−1∏
i=1

1
Si Length

5
User Guide

5.1 Tool

This chapter gives an overview of the graphical iGesture tool shown in Figure 5.1.

Figure 5.1: Screenshot iGesture tool

35

36 5.1. TOOL

5.1.1 Capturing Gestures

On each tab there is a capture area as shown in Figure 5.2. It displays the gesture that has
been been captured most recently by a specific input device. This gesture input can be used
for various tasks as described in the following sections. Note that a click on the update button
updates the gesture.

Figure 5.2: Capturing a gesture

5.1.2 Managing Gesture Sets and Classes

The Admin Tab provides functionality to create and manage gesture classes and sets. Classes
and the related descriptors can be created and summarised to gesture sets.

Create and Edit Gesture Classes

A new gesture class can be created from the context menu which is reachable with a right
mouse click in the Gesture Classes frame as shown in Figure 5.3.

Figure 5.3: Create a new gesture class

After selecting Create new Gesture Class the new Gesture Class Edit frame appears and the
gesture class can be named. The list below the name shows the available descriptors of this
class. Right after the creation of a new gesture class no descriptor is visible. A mouse click
in the list with the right button shows the context menu as outlined in Figure 5.4. The add

CHAPTER 5. USER GUIDE 37

button allows to create sample and text descriptors. By the same menu descriptors can also
be edited and deleted.

Figure 5.4: Create a new descriptor

Figure 5.5 shows the two available descriptor frames. The Text Descriptor contains a text
field where the description can be made. A click on the OK button stores the description and
closes the frame.

In the Sample Descriptor frame the gesture currently shown in the capturing area is added
as new sample with a mouse click on the Add button. Samples can be deleted by using the
context menu of the list showing the samples.

(a) Text descriptor (b) Sample descriptor

Figure 5.5: Descriptors

Create and Edit Gesture Sets

Gesture sets are created and managed in the Gesture Sets frame as illustrated in Figure 5.6.
The sets and the related classes are shown in a tree structure. Each level of the three has a
context menu for specific operations. A click on the root node allows the creation of new
gesture sets. Alternatively, existing sets can be imported from an XML file.

38 5.1. TOOL

Figure 5.6: Create a new gesture set

Figure 5.7 shows the window that appears when a new set is created. In the text field the set
can be named and it is added after a click on the Create button.

Figure 5.7: Set name of the gesture set

The context menu of the gesture set level shown in Figure 5.8 allows to add classes, delete
the set, export the set as XML file or PDF document and create a test set out of the gesture
set.

Figure 5.8: Add a gesture class to the set

The window shown in Figure 5.9 allows to add gesture classes to the selected gesture set.
Multi-select is also possible and the marked classes are added after a click on the Add button.

Figure 5.10 shows the context menu of the gesture class level. It allows to remove selected
classes from the gesture set.

5.1.3 Test Bench

The Test Bench Tab allows the manual test and creation of algorithm configurations. Fig-
ure 5.11 shows the frame with the available configurations and a list of parameters which can
be edited.

Configurations can be created, deleted and edited using the context menu shown in Fig-
ure 5.12. Another feature is the possibility to export a configuration to an XML file whereas
this file can be used for the initialization of the recogniser.

CHAPTER 5. USER GUIDE 39

Figure 5.9: Select gesture classes

Figure 5.10: Remove a gesture class

Figure 5.11: Algorithm configuration

Figure 5.12: Manage configurations

40 5.1. TOOL

The Algorithm frame shown in Figure 5.13 can test the recognition of a gesture shown in the
capture area. The configuration of the algorithm to be used for the recognition needs to be
open and a gesture set has to be selected. Afterwards, the recognition process can be started
and the result list is shown.

Figure 5.13: Result of the recognition

5.1.4 Test Data

With the Test Data Tab test sets can be created. Figure 5.14 shows the frame for selecting
the name of the captured gesture. Additionally to the available class names there is an entry
called None. This option is used to declare test gestures which are not part of the gesture set
and should be rejected by the algorithm. A click on the Add button copies the gesture to the
opened test set.

Figure 5.14: Name test gestures

The upper part of the Testset List shown in Figure 5.15 lists the available test set. Sets can
be created, deleted, edited and also imported and exported to an XML file. The list below
display the content of the selected test set. Using the context menu of this list enables the
deletion of particular test gestures.

CHAPTER 5. USER GUIDE 41

Figure 5.15: List of test sets

5.2 Framework

The use of the framework itself is demonstrated by a simple demo application. This applica-
tion knows three gestures, namely LeftRight, DownRight and UpLeft as shown in Figure 5.16.
In the first part all configuration issues are done programmatically. In a second step the use
of XML files is described.

LeftRight DownRight UpLeft

Figure 5.16: Example Gestures

This example uses the SiGeR algorithm which needs a text descriptor for each gesture class.
The Listing 5.1 shows how these gestures are created and grouped in a gesture set.

Listing 5.1: Creation of gesture classes
1 G e s t u r e C l a s s l e f t R i g h t L i n e = new G e s t u r e C l a s s (” L e f t R i g h t ”) ;
2 l e f t R i g h t L i n e . a d d D e s c r i p t o r (new T e x t D e s c r i p t o r (”E”)) ;
3

4 G e s t u r e C l a s s downRight = new G e s t u r e C l a s s (” DownRight ”) ;
5 downRight . a d d D e s c r i p t o r (new T e x t D e s c r i p t o r (”S , E”)) ;
6

7 G e s t u r e C l a s s u p L e f t = new G e s t u r e C l a s s (” UpLeft ”) ;
8 u p L e f t . a d d D e s c r i p t o r (new T e x t D e s c r i p t o r (”N,W”)) ;
9

10 G e s t u r e S e t g e s t u r e S e t = new G e s t u r e S e t (” G e s t u r e S e t ”) ;
11 g e s t u r e S e t . a d d G e s t u r e C l a s s (l e f t R i g h t L i n e) ;
12 g e s t u r e S e t . a d d G e s t u r e C l a s s (u p L e f t) ;
13 g e s t u r e S e t . a d d G e s t u r e C l a s s (downRight) ;

42 5.2. FRAMEWORK

In the next step, the Configuration object is created. The gesture set created before is
added to the configuration and the SiGeR algorithm is set as shown in Listing 5.2. With this
configuration the Recogniser can be instantiated.

Listing 5.2: Creation of gesture classes
1 C o n f i g u r a t i o n c o n f i g u r a t i o n = new C o n f i g u r a t i o n () ;
2 c o n f i g u r a t i o n . a d d G e s t u r e S e t (g e s t u r e S e t) ;
3 c o n f i g u r a t i o n . addAlgor i t hm (S i g e r R e c o g n i s e r . c l a s s . getName ()) ;
4 r e c o g n i s e r = new R e c o g n i s e r (c o n f i g u r a t i o n) ;

To capture the input of an appropriate device the InputDeviceClient is used. A list
of devices has to be instantiated and the MouseReader is added. This allows drawing
the gesture with the mouse while pressing the middle mouse button. After releasing the
button, the gesture is recognised. To be able to react on this event, this example class has
to implement the ButtonDeviceEventListener interface. These steps are shown in
Listing 5.3.

Listing 5.3: Creation of gesture classes
1 L i s t <I n p u t D e v i c e> d e v i c e s = new A r r a y L i s t <I n p u t D e v i c e >() ;
2 d e v i c e s . add (new MouseReader ()) ;
3 c l i e n t = new I n p u t D e v i c e C l i e n t (d e v i c e s) ;
4 c l i e n t . a d d B u t t o n D e v i c e E v e n t L i s t e n e r (t h i s) ;

The method shown in Listing 5.4 is executed after releasing the mouse button. The Note
is created with the data stored in the buffer of the InputDeviceClient which is cleared
afterwards. With this Note the recognise method is called and the result is stored in the
ResultSet. Depending on the result, the name of the classified gesture or ‘recognition
failed’ is printed on the console.

Listing 5.4: Creation of gesture classes
1 p u b l i c vo id handleMouseUpEvent (I n p u t D e v i c e E v e n t e v e n t) {
2 R e s u l t S e t r e s u l t = r e c o g n i s e r . r e c o g n i s e (c l i e n t . c r e a t e N o t e (0 , e v e n t . ge tT imes tamp

() , 70)) ;
3 c l i e n t . c l e a r B u f f e r () ;
4 i f (r e s u l t . i sEmpty ()) {
5 System . o u t . p r i n t l n (” r e c o g n i t i o n f a i l e d ”) ;
6 } e l s e {
7 System . o u t . p r i n t l n (r e s u l t . g e t R e s u l t () . getName ()) ;
8 }
9 }

Alternatively to defining the gesture set and classes programmatically it can be done in an
XML file as illustrated in Listing 5.5. This has the advantage that gestures can be defined
independently of the source code and the instantiation of an algorithm is much shorter.

CHAPTER 5. USER GUIDE 43

Listing 5.5: XML Configuration
1 <? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8” ?>
2 <c o n f i g u r a t i o n>
3 <a l g o r i t h m name=” org . x i mt ec . i g e s t u r e . a l g o r i t h m . s i g e r . S i g e r R e c o g n i s e r ” />
4 <s e t name=” g e s t u r e S e t 1 ” i d =” 1 ”>
5 <c l a s s name=” L e f t R i g h t ” i d =” 2 ”>
6 < t e x t D e s c r i p t o r>< t e x t>E< / t e x t>< / t e x t D e s c r i p t o r>
7 < / c l a s s>
8 <c l a s s name=” DownRight ” i d =” 3 ”>
9 < t e x t D e s c r i p t o r>< t e x t>S , E< / t e x t>< / t e x t D e s c r i p t o r>

10 < / c l a s s>
11 <c l a s s name=” UpLeft ” i d =” 4 ”>
12 < t e x t D e s c r i p t o r>< t e x t>N,W< / t e x t>< / t e x t D e s c r i p t o r>
13 < / c l a s s>
14 < / s e t>
15 < / c o n f i g u r a t i o n>

If the configuration is done with an XML file, Listing 5.6 replaces Listing 5.1 and 5.2. Note
that semantically the two declaration are identical.

Listing 5.6: Creation of gesture classes
1 r e c o g n i s e r = new R e c o g n i s e r (C o n f i g u r a t i o n T o o l . importXML (new F i l e (” c o n f i g . xml ”))) ;

5.3 Batch Processing

Our batch processing front end has a command line interface. It is started with the batch.bat
file located in the root directory of iGesture. Starting the program without any parameters
will show a help screen as outlined in Figure fig:batchhelp. The following table explains the
possible parameters.

config Denotes the path to an XML file containing the configuration of the batch
process. The syntax of this configuration file is described in the implemen-
tation section and an example is given in Listing 5.7.

gestureset Denotes the path to an XML file containing a gesture set. This file can
be created using the graphical iGesture tool. This is the gesture set the
algorithm specified in the configuration file will work on.

testset Denotes the path to an XML file containing a test set. Again this file can be
created in the graphical iGesture tool and holds valid as also invalid gesture
samples. This set is used to measure the quality of an algorithm.

xml Denotes the path to the output XML file. It contains the results of the batch
process in a raw format.

xsl Denotes the path to an XSLT file. It is used to render an HTML page out of
the raw data. An example XSLT file is located in the XML resource folder
of iGesture.

html Denotes the path to the output HTML document which is rendered with the
XSLT file.

44 5.3. BATCH PROCESSING

Figure 5.17: Batch processing help screen

Listing 5.7: XML Configuration
1 <? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8” ?>
2 <i G e s t u r e B a t c h>
3 <a l g o r i t h m name=” org . x i mt ec . i g e s t u r e . a l g o r i t h m . s i g n a t u r e . S i g n a t u r e A l g o r i t h m ”>
4 <p a r a m e t e r name=” GRID SIZE ”>
5 <f o r s t a r t =” 8 ” end=” 16 ” s t e p =” 2 ” />
6 < / p a r a m e t e r>
7 <p a r a m e t e r name=”RASTER SIZE”>
8 <f o r s t a r t =” 120 ” end=” 240 ” s t e p =” 10 ” />
9 < / p a r a m e t e r>

10 <p a r a m e t e r name=”DISTANCE FUNCTION”>
11 <s e q u e n c e>
12 <v a l u e>org . x i mte c . i g e s t u r e . a l g o r i t h m . s i g n a t u r e . HammingDistance< / v a l u e>
13 <v a l u e>org . x i mte c . i g e s t u r e . a l g o r i t h m . s i g n a t u r e . L e v e n s h t e i n D i s t a n c e< / v a l u e>
14 < / s e q u e n c e>
15 < / p a r a m e t e r>
16 <p a r a m e t e r name=”MIN DISTANCE”>
17 <f o r s t a r t =” 1 ” end=” 5 ” s t e p =” 1 ” />
18 < / p a r a m e t e r>
19 < / a l g o r i t h m>
20 < / i G e s t u r e B a t c h>

6
Evaluation

This section deals with the evaluation of the implemented algorithms using different config-
urations and gesture sets. It is mainly divided into three parts each one based on a different
kind of gesture sets.

As described in Chapter 4 our framework currently supports three algorithms. However, in
the following experiments we distinguish between the original algorithm presented by Rubine
and the one which has been extended as part of this diploma thesis. Therefore, in total we
evaluate four algorithms, three of them using samples as descriptors and one using textual
definitions.

6.1 Key Figures

There are four different result categories how an input can be classified by an algorithm. First,
the algorithm recognises the input correctly. Correctly means that the input is recognised as
the gesture it actually represents. This category is named Correct.

The category Error concerns incorrectly recognised gestures. In this case the algorithm re-
turns a wrong result which may lead to wrong actions triggered by the recognised gesture.

The third and fourth categories contain rejected gestures. A gesture can be rejected for good
reasons because it is not member of the gesture set. This category is denoted Reject Correct.
Gestures which are rejected although they are part of the gesture set are named Reject Error.

In the field of pattern recognition the key figures Precision and Recall are normaly used. The
Precision illustrated in Equation 6.1 denotes the amount of correct results in the result set.
The Recall shown in Equation 6.2 denotes how many of the correct results are returned at all.

Precision =
Pattern Candidates ∩ Control Set

Pattern Candidates
(6.1)

45

46 6.2. PALM GRAFFITI

Precision =
Pattern Candidates ∩ Control Set

Control Set
(6.2)

Transformed to our environment this gives the following key figures:

Precision
The Precision shown in Equation 6.3 denotes the proportion of correct results versus all
results. A value of 1 means that all recognised gestures are identified correctly. In other
words the result does not contain any errors.

Precision =
‖Correct‖

‖Correct‖+ ‖Error‖
(6.3)

Recall
The Recall illustrated in Equation 6.4 terms the amount of correct recognised gestures versus
the size of the test set without any noise. This means that the test set contains only gestures
which should be recongised correcty.

Recall =
‖Correct‖

‖Samples‖ − ‖Noise‖
(6.4)

F-Measure
The F-Measure shown in Equation 6.5 is the weighted harmonic mean of precision and recall.
We decided to weight precision and recall equally. Note that this measure is used to rank
different algorithms and their configurations.

F −Measure =
2 ∗ Precision ∗Recall

Precision + Recall
(6.5)

6.2 Palm Graffiti

The following experiments consider the 26 letters and 10 numbers of the Palm Graffiti alpha-
bet as shown in Appendix A.1. They cannot be combined into a single gesture set because
several gestures in the number set are similar to letters. Overall, we collected training and test
data from four persons which allows a more objective estimation than with a single user only.
The setup of each experiment is shortly described and the key figures of the best configuration
are presented.

6.2.1 Experiment 1: Graffiti Numbers

Experiment number 1 uses the Graffiti numbers as gesture set trained with 15 examples for
each gesture class by one person. The test set has a size of 150 valid samples and has been
collected by three different persons. To test the SiGeR algorithm a textual description of the
numbers was constructed manually.

Tables 6.1 and 6.2 show the key figures for the best configuration of each algorithm. The best
configuration is the one with the maximal F-Measure which is a compromise of precision

CHAPTER 6. EVALUATION 47

and recall. This means that the configuration should have a low error rate as well as a high
number of correctly recognised gestures.

Correct Error Reject Correct Reject Error Sample Noise
Rubine Extended 147 3 0 0 150 0
Rubine Original 134 15 0 1 150 0
Signature 126 9 0 15 150 0
SiGeR 131 6 0 13 150 0

Table 6.1: Experiment 1: Absolute values

Precision Recall F-Measure
Rubine Extended 0.980 0.980 0.980
Rubine Original 0.899 0.893 0.896
Signature 0.933 0.840 0.884
SiGeR 0.956 0.873 0.913

Table 6.2: Experiment 1: Key figures

Although the example-based algorithms are trained by only one person, nearly all algorithms
reached a Precision of at least 90%. The result shows that our new features used in the
extended version of the Rubine algorithm significantly improve the recognition quality. Even
the simple Signature algorithm has a higher Precision than the original implementation of the
Rubine algorithm.

Surprisingly, also the SiGeR algorithm has good test results. However, note that the textual
description of the gesture classes were done on the basis of this test set and therefore they are
optimised for this specific experiment.

6.2.2 Experiment 2: Graffiti Numbers

As in experiment number 1 we use the Graffiti numbers as gesture set. But this time the
training data was collected by four different persons. We trained each gesture class with 4
times 4 examples and the test set has a size of 140 samples which are collected from single
person. We compared only sample-based algorithms and so the SiGeR algorithm is not taken
into account anymore. Again the test set does contain only valid samples which should all be
recognised.

Correct Error Reject Correct Reject Error Sample Noise
Rubine Extended 140 0 0 0 140 0
Rubine Original 135 4 0 1 140 0
Signature 120 13 0 7 140 0

Table 6.3: Experiment 2: Absolute values

The Rubine algorithms provide better key figures than in experiment number 1 as shown in
Table 6.3 and 6.4. The extended Rubine algorithm achieved a perfect result whereas this
time the Signature algorithm has a higher error rate than the original Rubine algorithm. It

48 6.2. PALM GRAFFITI

Precision Recall F-Measure
Rubine Extended 1.000 1.000 1.000
Rubine Original 0.971 0.964 0.968
Signature 0.902 0.857 0.879

Table 6.4: Experiment 2: Key figures

can be assumed that the Rubine algorithm works significantly better with a broader variety of
training data.

6.2.3 Experiment 3: Graffiti Letters

This experiment uses the 26 Graffiti letters as gesture set. As in experiment number 1 the
training data is collected from a single person and the algorithms are trained with 15 examples
per gesture class. The test set has a size of 390 samples collected from three different persons.
As in the experiments before the test set contains valid data only.

Correct Error Reject Correct Reject Error Sample Noise
Rubine Extended 334 52 0 4 390 0
Rubine Original 280 107 0 3 390 0
Signature 261 126 0 3 390 0

Table 6.5: Experiment 3: Absolute values

Precision Recall F-Measure
Rubine Extended 0.865 0.856 0.861
Rubine Original 0.724 0.718 0.721
Signature 0.674 0.669 0.672

Table 6.6: Experiment 3: Key figures

The key figures shown in Tables 6.5 and 6.6 are significantly worse compared with experiment
number 1. The reason is the size of the gesture set which is 2.5 times larger and that we have
not increased the size of the training data. These results highlight that the number of samples
has to grow with the size of the gesture set.

It attracts attention that several letters have a very high error rate whereas others are recog-
nised perfectly. The reason for this behaviour is that the training data is collected by a single
person. Better results are expected using training data from different users.

6.2.4 Experiment 4: Graffiti Letters

As in experiment number 2 each gesture class is trained with 4 times 4 examples from differ-
ent users. The test set has a size of 363 samples and was produced by the same persons used
for the training of the algorithm. Again the test set does only contain valid gestures.

CHAPTER 6. EVALUATION 49

Table 6.2.4 and 6.2.4 show the key figures which are distinctively higher than in experiment
number 3 where the algorithms were trained by just one person. It is assumed that these values
can be further increased by using more examples for each gesture class. In comparison to
experiment number 3 there are no longer several gesture classes which are recognised badly.

Correct Error Reject Correct Reject Error Sample Noise
Rubine Extended 342 18 0 3 363 0
Rubine Original 305 48 0 10 363 0
Signature 253 32 0 78 363 0

Table 6.7: Experiment 4: Absolute values

Precision Recall F-Measure
Rubine Extended 0.950 0.942 0.946
Rubine Original 0.864 0.840 0.852
Signature 0.888 0.697 0.781

Table 6.8: Experiment 4: Key figures

6.2.5 Experiment 5: Graffiti Numbers

Experiment number 5 uses the same gesture set as experiment number 2 but the test set is
extended with Graffiti letters as noise which should be rejected by the recogniser. The test set
has a total size of 470 samples and is collected from four persons. Letters which are similar
to numbers are excluded from the test set because they would falsify the result. Therefore
there are 22 different gesture classes used as noise.

The key figures shown in Table 6.9 and 6.10 are definitely worse than in experiment number
2. The reason for this behaviour is that gestures have to be rejected earlier to retain the error
rate as low as possible. Even the extended Rubine algorithm has a precision lower than 92%
which seems to be too low for practical use. We assume that these results can be improved
by increasing the number of training data.

Correct Error Reject Correct Reject Error Sample Noise
Rubine Extended 114 11 319 26 470 330
Rubine Original 131 89 243 7 470 330
Signature 111 39 294 26 470 330

Table 6.9: Experiment 5: Absolute values

50 6.3. MICROSOFT APPLICATION GESTURES

Precision Recall F-Measure
Rubine Extended 0.912 0.814 0.860
Rubine Original 0.595 0.936 0.728
Signature 0.740 0.793 0.766

Table 6.10: Experiment 5: Key figures

6.3 Microsoft Application Gestures

This section uses the Microsoft Application Gestures shown in Appendix A.2 as gesture set.
Originally this set consists of 42 gestures but two of them which represents mouse- or pen-
clicks cannot be recognised with our feature based algorithm because the gesture consist of
only one or two points. Therefore the set used in the evaluation has a size of 40 gestures.

6.3.1 Experiment 6: Microsoft Application Gestures

The 40 gestures shown in Appendix A.2 are trained with 15 examples for each gesture class
by one person and it is tested with 5 instances of each gesture class provided by the same
person. Again the test set contains valid gestures only.

Tables 6.11 and 6.12 highlight that the extended Rubine algorithm has a good performance
although the number of used training data used is relatively small compared to the gesture set
size.

Correct Error Reject Correct Reject Error Sample Noise
Rubine Extended 196 2 0 2 200 0
Rubine Original 178 19 0 3 200 0
Signature 145 32 0 23 200 0

Table 6.11: Experiment 6: Absolute values

Precision Recall F-Measure
Rubine Extended 0.990 0.980 0.985
Rubine Original 0.904 0.890 0.897
Signature 0.819 0.725 0.769

Table 6.12: Experiment 6: Key figures

It is evident that this experiment is not realistic because the training data and the test data were
produced by the same person. Anyway, it shows that with the extended Rubine algorithm
good results can be achieved even with a small number of training data if the coverage is
good.

CHAPTER 6. EVALUATION 51

6.4 Multi-Stroke Gestures

We defined a set of 15 multi-stroke gestures as shown in Appendix A.3. Two of them consist
of a single stroke only and are prefixes of other multi-stroke gestures in the set. The set is quite
small but it should be a proof of concept that also multi-stroke gestures can be recognised by
the implemented algorithms.

6.4.1 Experiment 7: Multi-Stroke Gestures

In this experiment the algorithms are trained with 15 examples collected from one person and
tested with 5 samples for each gesture class collected from the same person.

The results shown in Tables 6.13 and 6.14 are good. All algorithms have a precision higher
than 96%. The reason for these results is that the algorithm is trained and tested by the same
person. Furthermore, the relatively high number of training-examples for each gesture class
has a positive effect.

Correct Error Reject Correct Reject Error Sample Noise
Rubine Extended 75 0 0 0 75 0
Rubine Original 72 3 0 0 75 0
Signature 72 1 0 2 75 0

Table 6.13: Experiment 7: Absolute values

Precision Recall F-Measure
Rubine Extended 1.000 1.000 1.000
Rubine Original 0.960 0.960 0.960
Signature 0.986 0.960 0.973

Table 6.14: Experiment 7: Key figures

6.4.2 Experiment 8: Multi-Stroke Gestures

In this experiment the algorithms are trained with 20 examples collected from one person and
tested with 5 samples for each gesture class collected from another person.

Correct Error Reject Correct Reject Error Sample Noise
Rubine Extended 74 1 0 0 75 0
Rubine Original 73 1 0 1 75 0
Signature 74 1 0 0 75 0

Table 6.15: Experiment 8: Absolute values

Surprisingly, all algorithms achieve nearly the same very good results as shown in Tables
6.15 and 6.16. The reasons for these good results are the high number of training samples
compared to the size of the gesture set and probably also the kind of gestures we used. They

52 6.5. SUMMARY

Precision Recall F-Measure
Rubine Extended 0.987 0.987 0.987
Rubine Original 0.986 0.973 0.980
Signature 0.987 0.987 0.987

Table 6.16: Experiment 8: Key figures

are not similar to each other and therefore it is easier for the algorithms to classify them
correctly.

6.5 Summary

The experiments have shown the behaviour of the chosen algorithms in different setups. Hav-
ing a look at the results, only the extended Rubine algorithm seems to be good enough for
practical usage. However, the other algorithms may have other strengths as for rapid proto-
typing.

Simple geometric figures in a small gesture set could be recognised as well with the SiGeR
algorithm whiteout having to create a large amount of example data. This has the advantage
that an application can be extended easily with gestures for case studies.

The Signature algorithm can also lead to good results if the gesture set is not too big and
only a few gesture class examples are available. In this setting it can be even superior to the
Rubine algorithm because this one needs several examples per gesture class to compute the
weights. If the number of gesture examples is too small, it is actually possible that the Rubine
algorithm cannot be instantiated because the determinant of the covariance matrix is zero and
therefore the inverse cannot be computed.

In general the features defined as part of this diploma thesis helped to improve the Rubine
algorithm’s performance significantly.

7
Future Work

iGesture as framework and tool has reached a stable state and in a next step it has to be
integrated in applications for evaluating it in practice and enhance it on the basis of these
results. First simple sample applications are showing that the framework is easy to integrate
and that the functionality is quite solid. The framework is designed to be extendable in
different ways for adding functionality and fulfilling any practical needs and requirements.

The following section describes some extension which would be desirable but were not im-
plemented as part of this diploma thesis.

Capturing of sample Gestures
The gathering of sample gestures which are used in example-based algorithm is a time con-
suming task using the iGesture tool. This task could be improved with an iPaper application
for collecting the sample data. We could imagine to use a form containing a table. The first
cell in each row shows the sample gestures. The other cells in the row can collect sample
gestures. Preferably, such a form could be generated automatically by the iGesture tool.

Beside the reduced amount of time required for collecting the required data this would also
enable us to gather sample gestures from untrained users resulting in a better coverage of the
test data.

Algorithm
Up to now we have not implemented algorithms using techniques from the field of artificial
intelligence. This technique is broadly used in speech and image-recognition and should also
work reliable for gesture recognition.

Neuronal networks and hidden Markov models are mentioned in work dealing with pattern
recognition. There already exist frameworks implementing these algorithms.

Interpreter
For the recognition of single gestures recognisers are appropriate. However, if we have more
complex elements consisting of several gestures we need another abstraction level that can

53

54

handle such higher level objects. An interpreter could use the recognisers to detect gestures
and assemble them to higher level objects.

In addition to the recognisers an interpreter also uses contextual information to achieve more
reliable results and to get the semantic of a set of drawn gestures.

Extended Evaluation
The existing algorithms have been tested with a small number of users only. It would be
interesting to know how good they perform with gestures captured from a larger group of
users. Also a comparison with the Microsoft Tablet PC SDK regarding their application
gesture set would be interesting. Therefore, a wrapper for the Microsoft recogniser would
have to be implemented based on the Java Native Interface.

Test Suite
It would be more user friendly if the tool for testing algorithms in batch mode would be
integrated into the graphical tool. This would also provide more functionality concerning the
analysis of the results in comparison to the presentation of a simple HTML file. A wizard to
create batch configurations would be another improvement.

8
Conclusion

The goal of this diploma thesis was the design and implementation of a general gesture recog-
nition framework. With iGesture such a gesture recognition framework and the necessary
tools to create gesture-based pen applications was developed. It supports various algorithms
and can easily be extended. The tools enable the creation of gesture sets and provide func-
tionality to test algorithms manually or in batch mode.

In addition to the framework we designed a new simple algorithm for the recognition process
and realised significant improvements for the Rubine algorithm. The existing set of Rubine’s
single-stroke features was extended and we also designed some special features to classify
multi-stroke gestures.

The evaluation in Chapter 6 proved that good recognition results can be achieved as long
as the algorithms are trained with adequate training data and the gesture set itself is well
designed. Furthermore, it is shown that our newly defined features increase the quality of the
recognition process significantly.

55

56

A
Gestures

This chapter shows images of the gesture sets used in Chapter 6.

A.1 Palm Graffiti

The images showing the Graffiti alphabet are taken from [6].

Figure A.1: Palm Graffiti letters

Figure A.2: Palm Graffiti numbers

57

58 A.2. MICROSOFT APPLICATION GESTURES

A.2 Microsoft Application Gestures

The images of the Microsoft Application Gestures are taken from [4].

Gesture Gesture name Action

Scratch-out Erase content

Triangle Insert

Square Action item

Star Action item

Check Check-off

Curlicue Cut

APPENDIX A. GESTURES 59

Double-Curlicue Copy

Circle Application-specific

Double-circle Paste

Left-semicircle Undo

Right-semicircle Redo

Caret Paste/Insert

Inverted-caret Insert

60 A.2. MICROSOFT APPLICATION GESTURES

Chevron-left Application-specific

Chevron-right Application-specific

Arrow-up Application-specific

Arrow-down Application-specific

Arrow-left Application-specific

Arrow-right Application-specific

Up Application-specific

APPENDIX A. GESTURES 61

Down Application-specific

Left Backspace

Right Space

Up-left Application-specific

Up-right Application-specific

Down-left Application-specific

Down-right Application-specific

62 A.2. MICROSOFT APPLICATION GESTURES

Left-up Application-specific

Left-down Application-specific

Right-up Input Method Editor (IME) convert

Right-down Application-specific

Up-down Undo

Down-up Application-specific

Left-right Move cursor left

APPENDIX A. GESTURES 63

Right-Left Move cursor right

Up-left-long Decrease indent

Up-right-long Tab

Down-left-long Enter

Down-right-long Space

Exclamation Application-specific

Tap Click

64 A.3. MULTI-STROKE GESTURES

Double-tap Left-Double-click

A.3 Multi-Stroke Gestures

Double-Line X Arrow-Left-Right

Arrow-Right-Left Dollar TicTacToe

Smiley Semi-Circles Angle

Mean Star Interface

Class Down Left-Right

Figure A.3: Multi-Stroke Gestures

B
XML Schema

B.1 org.sigtec.ink.Note

Listing B.1: XML Schema note.xsd
1

2 <? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8” ?>
3 <xs : s chema x m l n s : x s =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema”>
4

5 <x s : e l e m e n t name=” n o t e ” t y p e =” NoteType ” />
6

7 <xs :complexType name=” NoteType ”>
8 <x s : s e q u e n c e minOccurs=” 1 ” maxOccurs=” unbounded ”>
9 <x s : e l e m e n t name=” t r a c e ” t y p e =” TraceType ” />

10 < / x s : s e q u e n c e>
11 < / xs :complexType>
12

13 <xs :complexType name=” TraceType ”>
14 <x s : s e q u e n c e minOccurs=” 1 ” maxOccurs=” unbounded ”>
15 <x s : e l e m e n t name=” p o i n t ” t y p e =” Po in tType ” />
16 < / x s : s e q u e n c e>
17 < / xs :complexType>
18

19 <xs :complexType name=” Po in tType ”>
20 <x s : s e q u e n c e>
21 <x s : e l e m e n t name=” x ” t y p e =” x s : d o u b l e ”>< / x s : e l e m e n t>
22 <x s : e l e m e n t name=” y ” t y p e =” x s : d o u b l e ”>< / x s : e l e m e n t>
23 <x s : e l e m e n t name=” t imes t amp ” t y p e =” x s : l o n g ”>< / x s : e l e m e n t>
24 <x s : e l e m e n t name=” f o r c e ” t y p e =” x s : i n t ”>< / x s : e l e m e n t>
25 <x s : e l e m e n t name=”yaw” t y p e =” x s : d o u b l e ”>< / x s : e l e m e n t>
26 <x s : e l e m e n t name=” p i t c h ” t y p e =” x s : d o u b l e ”>< / x s : e l e m e n t>
27 <x s : e l e m e n t name=” r o t a t i o n ” t y p e =” x s : d o u b l e ”>< / x s : e l e m e n t>
28 < / x s : s e q u e n c e>
29 < / xs :complexType>
30 < / x s : s chema>

65

66 B.2. ORG.XIMTEC.CONFIGURATION.CONFIGURATION

B.2 org.ximtec.configuration.Configuration

Listing B.2: XML Schema configuration.xsd
1 <? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8” ?>
2 <schema xmlns=” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema”
3 t a r g e t N a m e s p a c e =” h t t p : / / o rg . x i mt ec . i p a p e r . g e s t u r e . c o n f i g u r a t i o n ”
4 x m l n s : t n s =” h t t p : / / o rg . x i mt ec . i p a p e r . g e s t u r e . c o n f i g u r a t i o n ”>
5

6 <e l e m e n t name=” c o n f i g u r a t i o n ” t y p e =” tns :Mapp ingType ” />
7

8 <complexType name=” MappingType ”>
9 <s e q u e n c e>

10 <e l e m e n t name=” a l g o r i t h m ” t y p e =” t n s : A l g o r i t h m T y p e ”
11 minOccurs=” 0 ” maxOccurs=” unbounded ” />
12 <e l e m e n t name=” s e t ” t y p e =” t n s : S e t T y p e ” minOccurs=” 0 ”
13 maxOccurs=” unbounded ” />
14 < / s e q u e n c e>
15 < / complexType>
16

17 <complexType name=” Algor i thmType ”>
18 <s e q u e n c e minOccurs=” 1 ” maxOccurs=” unbounded ”>
19 <e l e m e n t name=” p a r a m e t e r ” t y p e =” t n s : P a r a m e t e r T y p e ”>< / e l e m e n t>
20 < / s e q u e n c e>
21 <a t t r i b u t e name=”name ” t y p e =” s t r i n g ”>< / a t t r i b u t e>
22 < / complexType>
23

24 <complexType name=” Parame te rType ”>
25 <s i m p l e C o n t e n t>
26 <e x t e n s i o n base =” s t r i n g ”>
27 <a t t r i b u t e name=”name ” t y p e =” s t r i n g ”>< / a t t r i b u t e>
28 < / e x t e n s i o n>
29 < / s i m p l e C o n t e n t>
30 < / complexType>
31

32 <complexType name=” SetType ”>
33 <s e q u e n c e minOccurs=” 0 ” maxOccurs=” unbounded ”>
34 <e l e m e n t name=” c l a s s ” t y p e =” t n s : C l a s s T y p e ”>< / e l e m e n t>
35 < / s e q u e n c e>
36 <a t t r i b u t e name=”name ” t y p e =” s t r i n g ”>< / a t t r i b u t e>
37 < / complexType>
38

39 <complexType name=” ClassType ”>
40 <s e q u e n c e minOccurs=” 1 ” maxOccurs=” unbounded ”>
41 <e l e m e n t name=” d e s c r i p t o r ” t y p e =” t n s : D e s c r i p t o r T y p e ”>< / e l e m e n t>
42 < / s e q u e n c e>
43 <a t t r i b u t e name=”name ” t y p e =” s t r i n g ”>< / a t t r i b u t e>
44 < / complexType>
45

46 <complexType name=” D e s c r i p t o r T y p e ”>
47 <s e q u e n c e minOccurs=” 1 ” maxOccurs=” unbounded ”>
48 <e l e m e n t name=” n o t e ” t y p e =” t n s : S a m p l e T y p e ”>< / e l e m e n t>
49 < / s e q u e n c e>
50 <a t t r i b u t e name=” t y p e ” t y p e =” s t r i n g ”>< / a t t r i b u t e>
51 < / complexType>
52

53 <complexType name=” NoteType ”>
54 <s e q u e n c e minOccurs=” 1 ” maxOccurs=” unbounded ”>
55 <e l e m e n t name=” t r a c e ” t y p e =” t n s : T r a c e T y p e ”>< / e l e m e n t>
56 < / s e q u e n c e>
57 < / complexType>
58

59 <complexType name=” TraceType ”>
60 <s e q u e n c e minOccurs=” 1 ” maxOccurs=” unbounded ”>
61 <e l e m e n t name=” P o i n t ” t y p e =” t n s : P o i n t T y p e ”>< / e l e m e n t>

APPENDIX B. XML SCHEMA 67

62 < / s e q u e n c e>
63 < / complexType>
64

65 <complexType name=” Po in tType ”>
66 <s e q u e n c e>
67 <e l e m e n t name=” x ” t y p e =” do ub l e ”>< / e l e m e n t>
68 <e l e m e n t name=” y ” t y p e =” do ub l e ”>< / e l e m e n t>
69 <e l e m e n t name=” t imes t amp ” t y p e =” long ”>< / e l e m e n t>
70 <e l e m e n t name=” f o r c e ” t y p e =” i n t ”>< / e l e m e n t>
71 <e l e m e n t name=”yaw” t y p e =” x s : d o u b l e ”>< / e l e m e n t>
72 <e l e m e n t name=” p i t c h ” t y p e =” x s : d o u b l e ”>< / e l e m e n t>
73 <e l e m e n t name=” r o t a t i o n ” t y p e =” x s : d o u b l e ”>< / e l e m e n t>
74 < / s e q u e n c e>
75 < / complexType>
76

77 <complexType name=” SampleType ”>
78 <s e q u e n c e>
79 <e l e m e n t name=” n o t e ” t y p e =” t n s : N o t e T y p e ”>< / e l e m e n t>
80 < / s e q u e n c e>
81 <a t t r i b u t e name=”name ” t y p e =” s t r i n g ”>< / a t t r i b u t e>
82 < / complexType>
83 < / schema>

Listing B.3: XML Schema mapping.xsd
1 <? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8” ?>
2 <schema xmlns=” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema”
3 t a r g e t N a m e s p a c e =” h t t p : / / o rg . x i mt ec . i p a p e r . g e s t u r e . mapping ”
4 x m l n s : t n s =” h t t p : / / o rg . x i mt ec . i p a p e r . g e s t u r e . mapping ”>
5

6 <e l e m e n t name=” mapping ” t y p e =” tns :Mapp ingType ” />
7

8 <complexType name=” MappingType ”>
9 <s e q u e n c e>

10 <e l e m e n t name=”map” t y p e =” tns :MapType ”
11 minOccurs=” 0 ” maxOccurs=” unbounded ” />
12 < / s e q u e n c e>
13 < / complexType>
14

15 <complexType name=”MapType”>
16 <a t t r i b u t e name=”name ” t y p e =” s t r i n g ”>< / a t t r i b u t e>
17 <a t t r i b u t e name=” v a l u e ” t y p e =” i n t e g e r ”>< / a t t r i b u t e>
18 < / complexType>
19 < / schema>

68 B.2. ORG.XIMTEC.CONFIGURATION.CONFIGURATION

C
Evaluation Statistics

C.1 Experiment 1

C.1.1 Extended Rubine Algorithm

Configuration

Parameter Value
MAHALANOBIS DISTANCE 13600.0
MIN DISTANCE 2.0
FEATURE LIST F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13,

F16, F17, F18, F19, F20, F15, F14
PROPABILITY 0.95

Absolute values

Correct Error Reject Correct Reject Error Samples total Noise
147 3 0 0 150 0

69

70 C.1. EXPERIMENT 1

Absolute values per gesture class

Gesture Class Correct Error Reject Correct Reject Error
0 Graffiti 15 0 0 0
1 Graffiti 15 0 0 0
2 Graffiti 13 2 0 0
3 Graffiti 15 0 0 0
4 Graffiti 15 0 0 0
5 Graffiti 15 0 0 0
6 Graffiti 15 0 0 0
7 Graffiti 15 0 0 0
8 Graffiti 14 1 0 0
9 Graffiti 15 0 0 0
None 0 0 0 0

Key figures

Precision Recall F-measure
0.98 0.98 0.98

C.1.2 Original Rubine Algorithm

Configuration

Parameter Value
MAHALANOBIS DISTANCE 6600.0
MIN DISTANCE 3.0
FEATURE LIST F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13
PROPABILITY 0.95

Absolute values

Correct Error Reject Correct Reject Error Samples total Noise
134 15 0 1 150 0

APPENDIX C. EVALUATION STATISTICS 71

Absolute values per gesture class

Gesture Class Correct Error Reject Correct Reject Error
0 Graffiti 15 0 0 0
1 Graffiti 15 0 0 0
2 Graffiti 14 1 0 0
3 Graffiti 14 1 0 0
4 Graffiti 14 0 0 1
5 Graffiti 15 0 0 0
6 Graffiti 15 0 0 0
7 Graffiti 8 7 0 0
8 Graffiti 14 1 0 0
9 Graffiti 10 5 0 0
None 0 0 0 0

Key figures

Precision Recall F-measure
0.8993288590604027 0.8933333333333333 0.8963210702341138

C.1.3 Signature Algorithm

Configuration

Parameter Value
DISTANCE FUNCTION org.ximtec.igesture.algorithm.signature.HammingDistance
RASTER SIZE 250.0
MIN ACCURACY 0.7000000000000001
MIN DISTANCE 1.0
GRID SIZE 8.0

Absolute values

Correct Error Reject Correct Reject Error Samples total Noise
126 9 0 15 150 0

72 C.1. EXPERIMENT 1

Absolute values per gesture class

Gesture Class Correct Error Reject Correct Reject Error
0 Graffiti 11 1 0 3
1 Graffiti 15 0 0 0
2 Graffiti 12 2 0 1
3 Graffiti 14 0 0 1
4 Graffiti 14 0 0 1
5 Graffiti 11 3 0 1
6 Graffiti 15 0 0 0
7 Graffiti 12 1 0 2
8 Graffiti 13 0 0 2
9 Graffiti 9 2 0 4
None 0 0 0 0

Key figures

Precision Recall F-measure
0.9333333333333333 0.84 0.8842105263157894

C.1.4 SiGeR Algorithm

Configuration

Parameter Value
MIN DISTANCE 2.0

Absolute values

Correct Error Reject Correct Reject Error Samples total Noise
131 6 0 13 150 0

APPENDIX C. EVALUATION STATISTICS 73

Absolute values per gesture class

Gesture Class Correct Error Reject Correct Reject Error
0 Graffiti 15 0 0 0
1 Graffiti 14 0 0 1
2 Graffiti 13 2 0 0
3 Graffiti 15 0 0 0
4 Graffiti 12 3 0 0
5 Graffiti 13 1 0 1
6 Graffiti 10 0 0 5
7 Graffiti 15 0 0 0
8 Graffiti 14 0 0 1
9 Graffiti 10 0 0 5
None 0 0 0 0

Key figures

Precision Recall F-measure
0.9562043795620438 0.8733333333333333 0.9128919860627178

C.2 Experiment 2

C.2.1 Extended Rubine Algorithm

Configuration

Parameter Value
MAHALANOBIS DISTANCE 6000.0
MIN DISTANCE 1.0
FEATURE LIST F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13,

F16, F17, F18, F19, F20, F15, F14
PROPABILITY 0.95

Absolute values

Correct Error Reject Correct Reject Error Samples total Noise
140 0 0 0 140 0

74 C.2. EXPERIMENT 2

Absolute values per gesture class

Gesture Class Correct Error Reject Correct Reject Error
0 Graffiti 14 0 0 0
1 Graffiti 14 0 0 0
2 Graffiti 14 0 0 0
3 Graffiti 14 0 0 0
4 Graffiti 14 0 0 0
5 Graffiti 14 0 0 0
6 Graffiti 14 0 0 0
7 Graffiti 14 0 0 0
8 Graffiti 14 0 0 0
9 Graffiti 14 0 0 0
None 0 0 0 0

Key figures

Precision Recall F-measure
1.0 1.0 1

C.2.2 Original Rubine Algorithm

Configuration

Parameter Value
MAHALANOBIS DISTANCE 2800.0
MIN DISTANCE 3.0
FEATURE LIST F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13

PROPABILITY 0.95

Absolute values

Correct Error Reject Correct Reject Error Samples total Noise
135 4 0 1 140 0

APPENDIX C. EVALUATION STATISTICS 75

Absolute values per gesture class

Gesture Class Correct Error Reject Correct Reject Error
0 Graffiti 14 0 0 0
1 Graffiti 14 0 0 0
2 Graffiti 14 0 0 0
3 Graffiti 14 0 0 0
4 Graffiti 13 1 0 0
5 Graffiti 14 0 0 0
6 Graffiti 14 0 0 0
7 Graffiti 13 1 0 0
8 Graffiti 12 2 0 0
9 Graffiti 13 0 0 1
None 0 0 0 0

Key figures

Precision Recall F-measure
0.9712230215827338 0.9642857142857143 0.967741935483871

C.2.3 Signature Algorithm

Configuration

Parameter Value
DISTANCE FUNCTION org.ximtec.igesture.algorithm.signature.HammingDistance
RASTER SIZE 250.0
MIN ACCURACY 0.7500000000000001
MIN DISTANCE 1.0
GRID SIZE 8.0

Absolute values

Correct Error Reject Correct Reject Error Samples total Noise
120 13 0 7 140 0

76 C.3. EXPERIMENT 3

Absolute values per gesture class

Gesture Class Correct Error Reject Correct Reject Error
0 Graffiti 11 3 0 0
1 Graffiti 14 0 0 0
2 Graffiti 12 2 0 0
3 Graffiti 11 2 0 1
4 Graffiti 13 0 0 1
5 Graffiti 11 3 0 0
6 Graffiti 13 0 0 1
7 Graffiti 13 0 0 1
8 Graffiti 14 0 0 0
9 Graffiti 8 3 0 3
None 0 0 0 0

Key figures

Precision Recall F-measure
0.9022556390977443 0.8571428571428571 0.879120879120879

C.3 Experiment 3

C.3.1 Extended Rubine Algorithm

Configuration

Parameter Value
MAHALANOBIS DISTANCE 3600.0
MIN DISTANCE 3.0
FEATURE LIST F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13,

F16, F17, F18, F19, F20, F15, F14
PROPABILITY 0.95

Absolute values

Correct Error Reject Correct Reject Error Samples total Noise
334 52 0 4 390 0

APPENDIX C. EVALUATION STATISTICS 77

Absolute values per gesture class

Gesture Class Correct Error Reject Correct Reject Error
A Graffiti 15 0 0 0
B Graffiti 11 3 0 1
C Graffiti 9 5 0 1
D Graffiti 5 10 0 0
E Graffiti 14 1 0 0
F Graffiti 15 0 0 0
G Graffiti 14 1 0 0
H Graffiti 10 4 0 1
I Graffiti 13 2 0 0
J Graffiti 15 0 0 0
K Graffiti 15 0 0 0
L Graffiti 15 0 0 0
M Graffiti 15 0 0 0
N Graffiti 15 0 0 0
None 0 0 0 0
O Graffiti 11 4 0 0
P Graffiti 8 7 0 0
Q Graffiti 13 2 0 0
R Graffiti 15 0 0 0
S Graffiti 15 0 0 0
T Graffiti 15 0 0 0
U Graffiti 15 0 0 0
V Graffiti 14 1 0 0
W Graffiti 14 1 0 0
X Graffiti 15 0 0 0
Y Graffiti 11 4 0 0
Z Graffiti 7 7 0 1

Key figures

Precision Recall F-measure
0.8652849740932642 0.8564102564102564 0.8608247422680412

78 C.3. EXPERIMENT 3

C.3.2 Original Rubine Algorithm

Configuration

Parameter Value
MAHALANOBIS DISTANCE 3200.0
MIN DISTANCE 3.0
FEATURE LIST F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13

PROPABILITY 0.95

Absolute values

Correct Error Reject Correct Reject Error Samples total Noise
280 107 0 3 390 0

APPENDIX C. EVALUATION STATISTICS 79

Absolute values per gesture class

Gesture Class Correct Error Reject Correct Reject Error
A Graffiti 2 13 0 0
B Graffiti 12 2 0 1
C Graffiti 9 6 0 0
D Graffiti 5 10 0 0
E Graffiti 14 1 0 0
F Graffiti 11 4 0 0
G Graffiti 13 2 0 0
H Graffiti 12 3 0 0
I Graffiti 15 0 0 0
J Graffiti 11 4 0 0
K Graffiti 14 1 0 0
L Graffiti 7 8 0 0
M Graffiti 15 0 0 0
N Graffiti 15 0 0 0
None 0 0 0 0
O Graffiti 11 4 0 0
P Graffiti 11 3 0 1
Q Graffiti 10 5 0 0
R Graffiti 15 0 0 0
S Graffiti 15 0 0 0
T Graffiti 10 5 0 0
U Graffiti 4 11 0 0
V Graffiti 5 10 0 0
W Graffiti 12 3 0 0
X Graffiti 13 2 0 0
Y Graffiti 13 2 0 0
Z Graffiti 6 8 0 1

Key figures

Precision Recall F-measure
0.7235142118863049 0.717948717948718 0.7207207207207208

80 C.3. EXPERIMENT 3

C.3.3 Signature Algorithm

Configuration

Parameter Value
DISTANCE FUNCTION org.ximtec.igesture.algorithm.signature.HammingDistance
RASTER SIZE 250.0
MIN ACCURACY 0.6
MIN DISTANCE 1.0
GRID SIZE 8.0

Absolute values

Correct Error Reject Correct Reject Error Samples total Noise
261 126 0 3 390 0

APPENDIX C. EVALUATION STATISTICS 81

Absolute values per gesture class

Gesture Class Correct Error Reject Correct Reject Error
A Graffiti 10 5 0 0
B Graffiti 10 5 0 0
C Graffiti 9 6 0 0
D Graffiti 6 9 0 0
E Graffiti 12 3 0 0
F Graffiti 10 5 0 0
G Graffiti 12 2 0 1
H Graffiti 6 9 0 0
I Graffiti 12 2 0 1
J Graffiti 14 1 0 0
K Graffiti 9 5 0 1
L Graffiti 15 0 0 0
M Graffiti 15 0 0 0
N Graffiti 7 8 0 0
None 0 0 0 0
O Graffiti 13 2 0 0
P Graffiti 4 11 0 0
Q Graffiti 4 11 0 0
R Graffiti 8 7 0 0
S Graffiti 6 9 0 0
T Graffiti 15 0 0 0
U Graffiti 6 9 0 0
V Graffiti 8 7 0 0
W Graffiti 14 1 0 0
X Graffiti 9 6 0 0
Y Graffiti 12 3 0 0
Z Graffiti 15 0 0 0

Key figures

Precision Recall F-measure
0.6744186046511628 0.6692307692307692 0.6718146718146718

82 C.4. EXPERIMENT 4

C.4 Experiment 4

C.4.1 Extended Rubine Algorithm

Configuration

Parameter Value
MAHALANOBIS DISTANCE 2800.0
MIN DISTANCE 3.0
FEATURE LIST F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13,

F16, F17, F18, F19, F20, F15, F14
PROPABILITY 0.95

Absolute values

Correct Error Reject Correct Reject Error Samples total Noise
342 18 0 3 363 0

APPENDIX C. EVALUATION STATISTICS 83

Absolute values per gesture class

Gesture Class Correct Error Reject Correct Reject Error
A Graffiti 14 0 0 0
B Graffiti 9 5 0 0
C Graffiti 14 0 0 0
D Graffiti 14 0 0 0
E Graffiti 14 0 0 0
F Graffiti 14 0 0 0
G Graffiti 14 0 0 0
H Graffiti 13 1 0 0
I Graffiti 13 0 0 0
J Graffiti 14 0 0 0
K Graffiti 14 0 0 0
L Graffiti 14 0 0 0
M Graffiti 14 0 0 0
N Graffiti 14 0 0 0
None 0 0 0 0
O Graffiti 11 1 0 2
P Graffiti 14 0 0 0
Q Graffiti 14 0 0 0
R Graffiti 12 1 0 1
S Graffiti 12 2 0 0
T Graffiti 14 0 0 0
U Graffiti 14 0 0 0
V Graffiti 10 4 0 0
W Graffiti 14 0 0 0
X Graffiti 14 0 0 0
Y Graffiti 11 3 0 0
Z Graffiti 13 1 0 0

Key figures

Precision Recall F-measure
0.95 0.9421487603305785 0.946058091286307

C.4.2 Original Rubine Algorithm

Configuration

Parameter Value
MAHALANOBIS DISTANCE 1600.0
MIN DISTANCE 3.0
FEATURE LIST F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13
PROPABILITY 0.95

84 C.4. EXPERIMENT 4

Absolute values

Correct Error Reject Correct Reject Error Samples total Noise
305 48 0 10 363 0

Absolute values per gesture class

Gesture Class Correct Error Reject Correct Reject Error
A Graffiti 3 11 0 0
B Graffiti 8 6 0 0
C Graffiti 14 0 0 0
D Graffiti 13 1 0 0
E Graffiti 14 0 0 0
F Graffiti 12 1 0 1
G Graffiti 14 0 0 0
H Graffiti 13 1 0 0
I Graffiti 13 0 0 0
J Graffiti 10 3 0 1
K Graffiti 14 0 0 0
L Graffiti 9 3 0 2
M Graffiti 14 0 0 0
N Graffiti 14 0 0 0
None 0 0 0 0
O Graffiti 11 2 0 1
P Graffiti 14 0 0 0
Q Graffiti 11 2 0 1
R Graffiti 14 0 0 0
S Graffiti 14 0 0 0
T Graffiti 7 6 0 1
U Graffiti 12 1 0 1
V Graffiti 4 9 0 1
W Graffiti 13 1 0 0
X Graffiti 14 0 0 0
Y Graffiti 14 0 0 0
Z Graffiti 12 1 0 1

Key figures

Precision Recall F-measure
0.8640226628895185 0.8402203856749312 0.8519553072625698

APPENDIX C. EVALUATION STATISTICS 85

C.4.3 Signature Algorithm

Configuration

Parameter Value
DISTANCE FUNCTION org.ximtec.igesture.algorithm.signature.HammingDistance
RASTER SIZE 250.0
MIN ACCURACY 0.7500000000000001
MIN DISTANCE 1.0
GRID SIZE 12.0

Absolute values

Correct Error Reject Correct Reject Error Samples total Noise
253 32 0 78 363 0

86 C.4. EXPERIMENT 4

Absolute values per gesture class

Gesture Class Correct Error Reject Correct Reject Error
A Graffiti 5 0 0 9
B Graffiti 10 2 0 2
C Graffiti 11 1 0 2
D Graffiti 8 2 0 4
E Graffiti 12 2 0 0
F Graffiti 14 0 0 0
G Graffiti 9 4 0 1
H Graffiti 8 0 0 6
I Graffiti 11 0 0 2
J Graffiti 12 0 0 2
K Graffiti 7 1 0 6
L Graffiti 12 1 0 1
M Graffiti 11 0 0 3
N Graffiti 12 0 0 2
None 0 0 0 0
O Graffiti 10 4 0 0
P Graffiti 9 1 0 4
Q Graffiti 10 3 0 1
R Graffiti 9 4 0 1
S Graffiti 7 3 0 4
T Graffiti 9 1 0 4
U Graffiti 13 1 0 0
V Graffiti 8 1 0 5
W Graffiti 6 1 0 7
X Graffiti 7 0 0 7
Y Graffiti 10 0 0 4
Z Graffiti 13 0 0 1

Key figures

Precision Recall F-measure
0.887719298245614 0.696969696969697 0.7808641975308642

APPENDIX C. EVALUATION STATISTICS 87

C.5 Experiment 5

C.5.1 Extended Rubine Algorithm

Configuration

Parameter Value
MAHALANOBIS DISTANCE 400.0
MIN DISTANCE 3.0
FEATURE LIST F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13,

F16, F17, F18, F19, F20, F15, F14
PROPABILITY 0.95

Absolute values

Correct Error Reject Correct Reject Error Samples total Noise
114 11 319 26 470 330

Absolute values per gesture class

Gesture Class Correct Error Reject Correct Reject Error
0 Graffiti 7 0 0 7
1 Graffiti 14 0 0 0
2 Graffiti 11 0 0 3
3 Graffiti 14 0 0 0
4 Graffiti 14 0 0 0
5 Graffiti 13 0 0 1
6 Graffiti 12 0 0 2
7 Graffiti 13 0 0 1
8 Graffiti 3 0 0 11
9 Graffiti 13 0 0 1
None 0 11 319 0

Key figures

Precision Recall F-measure
0.912 0.8142857142857143 0.860377358490566

88 C.5. EXPERIMENT 5

C.5.2 Original Rubine Algorithm

Configuration

Parameter Value
MAHALANOBIS DISTANCE 400.0
MIN DISTANCE 3.0
FEATURE LIST F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13
PROPABILITY 0.95

Absolute values

Correct Error Reject Correct Reject Error Samples total Noise
131 89 243 7 470 330

Absolute values per gesture class

Gesture Class Correct Error Reject Correct Reject Error
0 Graffiti 14 0 0 0
1 Graffiti 14 0 0 0
2 Graffiti 14 0 0 0
3 Graffiti 14 0 0 0
4 Graffiti 13 1 0 0
5 Graffiti 14 0 0 0
6 Graffiti 14 0 0 0
7 Graffiti 13 1 0 0
8 Graffiti 9 0 0 5
9 Graffiti 12 0 0 2
None 0 87 243 0

Key figures

Precision Recall F-measure
0.5954545454545455 0.9357142857142857 0.7277777777777779

APPENDIX C. EVALUATION STATISTICS 89

C.5.3 Signature Algorithm

Configuration

Parameter Value
DISTANCE FUNCTION org.ximtec.igesture.algorithm.signature.HammingDistance
RASTER SIZE 250.0
MIN ACCURACY 0.8000000000000002
MIN DISTANCE 1.0
GRID SIZE 8.0

Absolute values

Correct Error Reject Correct Reject Error Samples total Noise
111 39 294 26 470 330

Absolute values per gesture class

Gesture Class Correct Error Reject Correct Reject Error
0 Graffiti 13 0 0 1
1 Graffiti 14 0 0 0
2 Graffiti 10 0 0 4
3 Graffiti 7 0 0 7
4 Graffiti 13 0 0 1
5 Graffiti 11 2 0 1
6 Graffiti 13 0 0 1
7 Graffiti 11 0 0 3
8 Graffiti 12 0 0 2
9 Graffiti 7 1 0 6
None 0 36 294 0

Key figures

Precision Recall F-measure
0.74 0.7928571428571428 0.7655172413793102

90 C.6. EXPERIMENT 6

C.6 Experiment 6

C.6.1 Extended Rubine Algorithm

Configuration

Parameter Value
MAHALANOBIS DISTANCE 10800.0
MIN DISTANCE 2.0
FEATURE LIST F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12,

F13, F21, F22, F14, F23, F24, F25, F15, F16, F17,
F18, F19

PROPABILITY 0.95

Absolute values

Correct Error Reject Correct Reject Error Samples total Noise
196 2 0 2 200 0

APPENDIX C. EVALUATION STATISTICS 91

Absolute values per gesture class

Gesture Class Correct Error Reject Correct Reject Error
Arrow-down 5 0 0 0
Arrow-left 5 0 0 0
Arrow-right 5 0 0 0
Arrow-up 5 0 0 0
Caret 5 0 0 0
Check 4 1 0 0
Chevron-left 5 0 0 0
Chevron-right 5 0 0 0
Circle 5 0 0 0
Curlicue 5 0 0 0
Double-circle 5 0 0 0
Double-Curlicue 5 0 0 0
Down 5 0 0 0
Down-left 5 0 0 0
Down-left-long 5 0 0 0
Down-right 5 0 0 0
Down-right-long 5 0 0 0
Down-up 5 0 0 0
Exclamation 5 0 0 0
Inverted-caret 4 0 0 1
Left 5 0 0 0
Left-down 5 0 0 0
Left-right 5 0 0 0
Left-semicircle 5 0 0 0
Left-up 5 0 0 0
None 0 0 0 0
Right 5 0 0 0
Right-down 5 0 0 0
Right-Left 4 1 0 0
Right-semicircle 5 0 0 0
Right-up 5 0 0 0
Scratch-out 5 0 0 0
Square 5 0 0 0
Star 5 0 0 0
Triangle 5 0 0 0
Up 5 0 0 0
Up-down 5 0 0 0
Up-left 5 0 0 0
Up-left-long 5 0 0 0
Up-right 4 0 0 1
Up-right-long 5 0 0 0

92 C.6. EXPERIMENT 6

Key figures

Precision Recall F-measure
0.98989898989899 0.98 0.9849246231155778

C.6.2 Original Rubine Algorithm

Configuration

Parameter Value
MAHALANOBIS DISTANCE 3200.0
MIN DISTANCE 3.0
FEATURE LIST F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13

PROPABILITY 0.95

Absolute values

Correct Error Reject Correct Reject Error Samples total Noise
178 19 0 3 200 0

APPENDIX C. EVALUATION STATISTICS 93

Absolute values per gesture class

Gesture Class Correct Error Reject Correct Reject Error
Arrow-down 5 0 0 0
Arrow-left 4 1 0 0
Arrow-right 5 0 0 0
Arrow-up 5 0 0 0
Caret 4 1 0 0
Check 3 2 0 0
Chevron-left 4 1 0 0
Chevron-right 3 2 0 0
Circle 5 0 0 0
Curlicue 5 0 0 0
Double-circle 5 0 0 0
Double-Curlicue 5 0 0 0
Down 5 0 0 0
Down-left 5 0 0 0
Down-left-long 5 0 0 0
Down-right 4 0 0 1
Down-right-long 5 0 0 0
Down-up 4 1 0 0
Exclamation 5 0 0 0
Inverted-caret 5 0 0 0
Left 5 0 0 0
Left-down 1 4 0 0
Left-right 1 4 0 0
Left-semicircle 4 0 0 1
Left-up 3 2 0 0
None 0 0 0 0
Right 5 0 0 0
Right-down 5 0 0 0
Right-Left 4 1 0 0
Right-semicircle 5 0 0 0
Right-up 5 0 0 0
Scratch-out 5 0 0 0
Square 5 0 0 0
Star 5 0 0 0
Triangle 5 0 0 0
Up 5 0 0 0
Up-down 4 0 0 1
Up-left 5 0 0 0
Up-left-long 5 0 0 0
Up-right 5 0 0 0
Up-right-long 5 0 0 0

94 C.6. EXPERIMENT 6

Key figures

Precision Recall F-measure
0.9035532994923858 0.89 0.8967254408060454

C.6.3 Signature Algorithm

Configuration

Parameter Value
DISTANCE FUNCTION org.ximtec.igesture.algorithm.signature.HammingDistance
RASTER SIZE 250.0
MIN ACCURACY 0.7000000000000001
MIN DISTANCE 1.0
GRID SIZE 12.0

Absolute values

Correct Error Reject Correct Reject Error Samples total Noise
145 32 0 23 200 0

APPENDIX C. EVALUATION STATISTICS 95

Absolute values per gesture class

Gesture Class Correct Error Reject Correct Reject Error
Arrow-down 4 0 0 1
Arrow-left 4 1 0 0
Arrow-right 5 0 0 0
Arrow-up 0 1 0 4
Caret 4 0 0 1
Check 3 2 0 0
Chevron-left 5 0 0 0
Chevron-right 1 0 0 4
Circle 5 0 0 0
Curlicue 3 1 0 1
Double-circle 4 0 0 1
Double-Curlicue 5 0 0 0
Down 1 4 0 0
Down-left 5 0 0 0
Down-left-long 5 0 0 0
Down-right 3 2 0 0
Down-right-long 4 1 0 0
Down-up 5 0 0 0
Exclamation 3 2 0 0
Inverted-caret 3 2 0 0
Left 4 1 0 0
Left-down 4 1 0 0
Left-right 5 0 0 0
Left-semicircle 3 0 0 2
Left-up 5 0 0 0
None 0 0 0 0
Right 2 1 0 2
Right-down 2 3 0 0
Right-Left 4 1 0 0
Right-semicircle 3 2 0 0
Right-up 5 0 0 0
Scratch-out 4 0 0 1
Square 3 0 0 2
Star 3 0 0 2
Triangle 2 1 0 2
Up 3 2 0 0
Up-down 5 0 0 0
Up-left 5 0 0 0
Up-left-long 5 0 0 0
Up-right 1 4 0 0
Up-right-long 5 0 0 0

96 C.7. EXPERIMENT 7

Key figures

Precision Recall F-measure
0.8192090395480226 0.725 0.7692307692307693

C.7 Experiment 7

C.7.1 Extended Rubine Algorithm

Configuration

Parameter Value
MAHALANOBIS DISTANCE 2000.0
MIN DISTANCE 3.0
FEATURE LIST F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12,

F13, F21, F22, F14, F23, F24, F25, F15, F16, F17,
F18, F19

PROPABILITY 0.95

Absolute values

Correct Error Reject Correct Reject Error Samples total Noise
75 0 0 0 75 0

Absolute values per gesture class

Gesture Class Correct Error Reject Correct Reject Error
Angle 5 0 0 0
Arrow-Left-Right 5 0 0 0
Arrow-Right-Left 5 0 0 0
Class 5 0 0 0
Dollar 5 0 0 0
Double-Line 5 0 0 0
Down 5 0 0 0
Interface 5 0 0 0
Left-Right 5 0 0 0
Mean 5 0 0 0
None 0 0 0 0
Semi-Circles 5 0 0 0
Smiley 5 0 0 0
Star 5 0 0 0
TicTacToe 5 0 0 0
X 5 0 0 0

APPENDIX C. EVALUATION STATISTICS 97

Key figures

Precision Recall F-measure
1.0 1.0 1

C.7.2 Original Rubine Algorithm

Configuration

Parameter Value
MAHALANOBIS DISTANCE 1200.0
MIN DISTANCE 1.0
FEATURE LIST F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13

PROPABILITY 0.95

Absolute values

Correct Error Reject Correct Reject Error Samples total Noise
72 3 0 0 75 0

Absolute values per gesture class

Gesture Class Correct Error Reject Correct Reject Error
Angle 5 0 0 0
Arrow-Left-Right 5 0 0 0
Arrow-Right-Left 5 0 0 0
Class 5 0 0 0
Dollar 5 0 0 0
Double-Line 5 0 0 0
Down 5 0 0 0
Interface 5 0 0 0
Left-Right 5 0 0 0
Mean 2 3 0 0
None 0 0 0 0
Semi-Circles 5 0 0 0
Smiley 5 0 0 0
Star 5 0 0 0
TicTacToe 5 0 0 0
X 5 0 0 0

98 C.7. EXPERIMENT 7

Key figures

Precision Recall F-measure
0.96 0.96 0.96

C.7.3 Signature Algorithm

Configuration

Parameter Value
DISTANCE FUNCTION org.ximtec.igesture.algorithm.signature.HammingDistance
RASTER SIZE 250.0
MIN ACCURACY 0.7000000000000001
MIN DISTANCE 1.0
GRID SIZE 8.0

Absolute values

Correct Error Reject Correct Reject Error Samples total Noise
72 1 0 2 75 0

Absolute values per gesture class

Gesture Class Correct Error Reject Correct Reject Error
Angle 5 0 0 0
Arrow-Left-Right 5 0 0 0
Arrow-Right-Left 5 0 0 0
Class 4 1 0 0
Dollar 5 0 0 0
Double-Line 5 0 0 0
Down 5 0 0 0
Interface 5 0 0 0
Left-Right 5 0 0 0
Mean 3 0 0 2
None 0 0 0 0
Semi-Circles 5 0 0 0
Smiley 5 0 0 0
Star 5 0 0 0
TicTacToe 5 0 0 0
X 5 0 0 0

APPENDIX C. EVALUATION STATISTICS 99

Key figures

Precision Recall F-measure
0.9863013698630136 0.96 0.9729729729729729

C.8 Experiment 8

C.8.1 Extended Rubine Algorithm

Configuration

Parameter Value
MAHALANOBIS DISTANCE 12800.0
MIN DISTANCE 1.0
FEATURE LIST F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13,

F16, F17, F18, F19, F20, F15, F14
PROPABILITY 0.95

Absolute values

Correct Error Reject Correct Reject Error Samples total Noise
74 1 0 0 75 0

Absolute values per gesture class

Gesture Class Correct Error Reject Correct Reject Error
Angle 5 0 0 0
Arrow-Left-Right 5 0 0 0
Arrow-Right-Left 5 0 0 0
Class 5 0 0 0
Dollar 5 0 0 0
Double-Line 5 0 0 0
Down 5 0 0 0
Interface 5 0 0 0
Left-Right 5 0 0 0
Mean 5 0 0 0
None 0 0 0 0
Semi-Circles 5 0 0 0
Smiley 5 0 0 0
Star 4 1 0 0
TicTacToe 5 0 0 0
X 5 0 0 0

100 C.8. EXPERIMENT 8

Key figures

Precision Recall F-measure
0.9866666666666667 0.9866666666666667 0.9866666666666668

C.8.2 Original Rubine Algorithm

Configuration

Parameter Value
MAHALANOBIS DISTANCE 5200.0
MIN DISTANCE 3.0
FEATURE LIST F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13

PROPABILITY 0.95

Absolute values

Correct Error Reject Correct Reject Error Samples total Noise
73 1 0 1 75 0

Absolute values per gesture class

Gesture Class Correct Error Reject Correct Reject Error
Angle 5 0 0 0
Arrow-Left-Right 5 0 0 0
Arrow-Right-Left 4 0 0 1
Class 5 0 0 0
Dollar 5 0 0 0
Double-Line 5 0 0 0
Down 5 0 0 0
Interface 5 0 0 0
Left-Right 5 0 0 0
Mean 5 0 0 0
None 0 0 0 0
Semi-Circles 5 0 0 0
Smiley 5 0 0 0
Star 4 1 0 0
TicTacToe 5 0 0 0
X 5 0 0 0

APPENDIX C. EVALUATION STATISTICS 101

Key figures

Precision Recall F-measure
0.9864864864864865 0.9733333333333334 0.9798657718120806

C.8.3 Signature Algorithm

Configuration

Parameter Value
DISTANCE FUNCTION org.ximtec.igesture.algorithm.signature.HammingDistance
RASTER SIZE 200.0
MIN ACCURACY 0.6
MIN DISTANCE 1.0
GRID SIZE 8.0

Absolute values

Correct Error Reject Correct Reject Error Samples total Noise
74 1 0 0 75 0

Absolute values per gesture class

Gesture Class Correct Error Reject Correct Reject Error
Angle 5 0 0 0
Arrow-Left-Right 5 0 0 0
Arrow-Right-Left 5 0 0 0
Class 5 0 0 0
Dollar 5 0 0 0
Double-Line 5 0 0 0
Down 5 0 0 0
Interface 5 0 0 0
Left-Right 5 0 0 0
Mean 5 0 0 0
None 0 0 0 0
Semi-Circles 5 0 0 0
Smiley 4 1 0 0
Star 5 0 0 0
TicTacToe 5 0 0 0
X 5 0 0 0

102 C.8. EXPERIMENT 8

Key figures

Precision Recall F-measure
0.9866666666666667 0.9866666666666667 0.9866666666666668

Acknowledgements

I would like to thank my supervising assistant Dr. Beat Signer for having always time to
support my diploma thesis in every respect, for his valuable feedback and last but not least
for reviewing my report. I am also grateful to Professor Dr. Moira C. Norrie for giving me
the opportunity to accomplish my diploma thesis in her group.

103

104 C.8. EXPERIMENT 8

Bibliography

[1] Apache Jakarta Commons, http://jakarta.apache.org/commons.

[2] db4objects, http://www.db4o.com.

[3] LipiTk, http://sourceforge.net/projects/lipitk.

[4] Microsoft Application Gestures, http://msdn.microsoft.com/library/default.asp?
url=/library/en-us/tpcsdk10/lonestar/whitepapers/designguide/
tbconusingapplicationgesturesandtheirsemantics.asp.

[5] Microsoft Tablet PC SDK, http://msdn.microsoft.com/library/default.asp?
url=/library/en-us/dnanchor/html/tabletpc.asp.

[6] Palm Graffiti, http://en.wikipedia.org/wiki/Graffiti %28Palm OS%29.

[7] SATIN, http://sourceforge.net/projects/satin.

[8] sigtec, http://www.sigtec.org.

[9] SwingGestures, http://sourceforge.net/projects/swinggestures.

[10] XStream, http://xstream.codehaus.org.

[11] Christine Alvarado and Randall Davis. SketchREAD: A Multi-Domain Sketch Recog-
nition Engine. In UIST ’04: Proceedings of the 17th Annual ACM Symposium on User
Interface Software and Technology, pages 23–32, New York, NY, USA, 2004. ACM
Press.

[12] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.
Addison Wesley, 1994.

[13] Ken Hinckley, Patrick Baudisch, Gonzalo Ramos, and François Guimbretièrere. Design
and Analysis of Delimiters for Selection-Action Pen Gesture Phrases in Scriboli. In
CHI ’05: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 451–460, New York, NY, USA, 2005. ACM Press.

[14] Jason I. Hong and James A. Landay. SATIN: A Toolkit for Informal Ink-Based Applica-
tions. In UIST ’00: Proceedings of the 13th Annual ACM Symposium on User Interface
Software and Technology, pages 63–72, New York, NY, USA, 2000. ACM Press.

105

106 BIBLIOGRAPHY

[15] Chunyuan Liao, François Guimbretièrere, and Ken Hinckley. PapierCraft: A Command
System for Interactive Paper. In UIST ’05: Proceedings of the 18th Annual ACM Sym-
posium on User Interface Software and Technology, pages 241–244, New York, NY,
USA, 2005. ACM Press.

[16] A. Christ Long, James A. Landay, and Lawrence A. Row. quill: Providing Advice for
Pen-Based Gesture Design. 2003.

[17] Allan Christian Long, James A. Landay, and Lawrence A. Rowe. Implications for a
Gesture Design Tool. In CHI ’99: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 40–47, New York, NY, USA, 1999. ACM Press.

[18] Sriganesh Madhvanath, Deepu Vijayasenan, and Thanigai Murugan Kadiresan. LipiTk:
A Generic Toolkit for Online Handwriting Recognition. 2006.

[19] P.C̃. Mahalanobis. On the Generalized Distance in Statistics. In National Institute of
Science of India, pages 49–55, Calcutta, India, 1936.

[20] Dean Rubine. Specifying Gestures by Example. In SIGGRAPH ’91: Proceedings of
the 18th Annual Conference on Computer Graphics and Interactive Techniques, pages
329–337, New York, NY, USA, 1991. ACM Press.

[21] Beat Signer. Fundamental Concepts for Interactive Paper and Cross-Media Information
Spaces. PhD thesis, ETH Zurich, 2006.

	Title
	Contents
	1 Introduction
	2 Related Work
	2.1 Specifying Gestures by Example
	2.2 SATIN: A Toolkit for Informal Ink-based Applications
	2.3 quill: Providing Advice for Pen-based Gesture Design
	2.4 SketchREAD: A Multi-Domain Sketch Recognition Engine
	2.5 LipiTk: A Generic Toolkit for Online Handwriting Recognition
	2.6 Microsoft Tablet PC SDK
	2.7 SwingGestures
	2.8 Design and Analysis of Delimiters for Selection-Action Pen Gesture Phrases in Scriboli
	2.9 PapierCraft: A System for Interactive Paper
	2.10 Summary

	3 Implementation
	3.1 Gesture Representation
	3.2 Recognition Algorithm
	3.3 Return Values
	3.4 Event Manager
	3.5 Recogniser
	3.6 Persistence Mechanism
	3.7 Management Console
	3.7.1 Test Bench Tab
	3.7.2 Admin Tab
	3.7.3 Test Data Tab
	3.7.4 Property File

	3.8 Batch Processing
	3.8.1 Test Configuration

	3.9 Name Value Mapping
	3.10 org.sigtec.ink.Note
	3.11 Dependencies

	4 Algorithm
	4.1 Rubine Algorithm
	4.1.1 Implementation

	4.2 SiGeR Algorithm
	4.2.1 Implementation

	4.3 Signature Algorithm
	4.4 Features
	4.4.1 Rubine Features
	4.4.2 Single Stroke Features
	4.4.3 Multi Stroke Features

	5 User Guide
	5.1 Tool
	5.1.1 Capturing Gestures
	5.1.2 Managing Gesture Sets and Classes
	5.1.3 Test Bench
	5.1.4 Test Data

	5.2 Framework
	5.3 Batch Processing

	6 Evaluation
	6.1 Key Figures
	6.2 Palm Graffiti
	6.2.1 Experiment 1: Graffiti Numbers
	6.2.2 Experiment 2: Graffiti Numbers
	6.2.3 Experiment 3: Graffiti Letters
	6.2.4 Experiment 4: Graffiti Letters
	6.2.5 Experiment 5: Graffiti Numbers

	6.3 Microsoft Application Gestures
	6.3.1 Experiment 6: Microsoft Application Gestures

	6.4 Multi-Stroke Gestures
	6.4.1 Experiment 7: Multi-Stroke Gestures
	6.4.2 Experiment 8: Multi-Stroke Gestures

	6.5 Summary

	7 Future Work
	8 Conclusion
	A Gestures
	A.1 Palm Graffiti
	A.2 Microsoft Application Gestures
	A.3 Multi-Stroke Gestures

	B XML Schema
	B.1 org.sigtec.ink.Note
	B.2 org.ximtec.configuration.Configuration

	C Evaluation Statistics
	C.1 Experiment 1
	C.1.1 Extended Rubine Algorithm
	C.1.2 Original Rubine Algorithm
	C.1.3 Signature Algorithm
	C.1.4 SiGeR Algorithm

	C.2 Experiment 2
	C.2.1 Extended Rubine Algorithm
	C.2.2 Original Rubine Algorithm
	C.2.3 Signature Algorithm

	C.3 Experiment 3
	C.3.1 Extended Rubine Algorithm
	C.3.2 Original Rubine Algorithm
	C.3.3 Signature Algorithm

	C.4 Experiment 4
	C.4.1 Extended Rubine Algorithm
	C.4.2 Original Rubine Algorithm
	C.4.3 Signature Algorithm

	C.5 Experiment 5
	C.5.1 Extended Rubine Algorithm
	C.5.2 Original Rubine Algorithm
	C.5.3 Signature Algorithm

	C.6 Experiment 6
	C.6.1 Extended Rubine Algorithm
	C.6.2 Original Rubine Algorithm
	C.6.3 Signature Algorithm

	C.7 Experiment 7
	C.7.1 Extended Rubine Algorithm
	C.7.2 Original Rubine Algorithm
	C.7.3 Signature Algorithm

	C.8 Experiment 8
	C.8.1 Extended Rubine Algorithm
	C.8.2 Original Rubine Algorithm
	C.8.3 Signature Algorithm

