
Diploma Thesis

GOMS

A Geographical Object Management
System

Raphael Huber, IIIC
raphael.huber@gmx.ch

August 3rd 2001

Institute for Information Systems
Swiss Federal Institute of Technology (ETHZ)

Diploma Professor:
Prof. Moira C. Norrie

Supervisors:
Beat Signer

Adrian Kobler

Abstract

Modelling Geographical Information Systems(GIS) using standard nota-
tions, such as ER or UML, forces the modelling engineer to build enities
containing attributes holding information for geographical representation.
Furthermore, there are no facilities to include frequently used spatial con-
straints into the model. This diploma thesis presents a framework to over-
come this lack by specifying spatial abstract data types and geographical
constraints. Part of the framework is also a generic viewer and editor ap-
plication called Geographical Object Desktop which makes use of the spatial
abstract data types to visualize any GIS built using Geographical Object
Management System (GOMS). The Geographical Object Desktop provides
an intuitive way of managing geographical data. The GOMS core is is struc-
tured in two layers: The middle layer is to decouple front-end applications
from persistence systems which enables portability of former ones and OMS
Java at the base is the current persistent Object Management System.

Contents

1 Introduction 8

2 Basic Concepts 10

2.1 Hierarchy of abstract geographical types 10

2.2 Geographical Constraints . 14

2.3 The GOMS Architecture . 20

3 Geographical Structure Base 21

3.1 GObjects . 22

3.2 Index structures - GSets . 27

3.3 Model & View . 29

3.4 Constraints . 34

4 Geographical Object Desktop 37

4.1 Navigator . 42

4.2 Overview . 43

4.3 View . 44

4.4 Selection . 45

4.5 Control . 48

4.6 Legend . 52

4.7 Map images . 54

5 Conclusions 56

5.1 Future Work . 57

5.2 Acknowledgements . 58

5

A Package gStructure 59

A.1 gStructure.AbstractView . 59

A.2 gStructure.Association . 62

A.3 gStructure.CollectionTable . 63

A.4 gStructure.CollectionTable.Model 64

A.5 gStructure.CollectionWrapper 65

A.6 gStructure.Div . 67

A.7 gStructure.GArea . 68

A.8 gStructure.GHashSet . 71

A.9 gStructure.GLine . 73

A.10 gStructure.GObject . 75

A.11 gStructure.GOrientedLine . 79

A.12 gStructure.GPoint . 80

A.13 gStructure.GSet . 83

A.14 gStructure.GSet.GIterator . 85

A.15 gStructure.InternalNode . 86

A.16 gStructure.Leaf . 87

A.17 gStructure.Model . 88

A.18 gStructure.Node . 90

A.19 gStructure.OpenQuadTree . 91

A.20 gStructure.TreeInsertable . 93

A.21 gStructure.Vertex . 94

A.22 gStructure.VertexShape . 96

B Package gStructure.constraint 98

B.1 ..constraint.GAContainingConstraint 98

B.2 ..constraint.GAssociationConstraint 99

B.3 ..constraint.GATouchingConstraint 100

B.4 ..constraint.GLayerConstraint 101

B.5 ..constraint.GLDisjointConstraint 102

B.6 ..constraint.GLTouchingConstraint 102

B.7 ..constraint.GObjectConstraint 103

B.8 ..constraint.GOCycleLineConstraint 104

7

B.9 ..constraint.GOOpenLineConstraint 104

C Package god 105

C.1 god.Const . 105

C.2 god.Control . 107

C.3 god.GOD . 110

C.4 god.GOD.RenameDialog . 113

C.5 god.GOD.SimpleFileFilter . 114

C.6 god.Legend . 115

C.7 god.LegendItem . 117

C.8 god.LegendItemDialog . 119

C.9 god.MapImage . 121

C.10 god.MapImage.TableModel 122

C.11 god.Navigator . 123

C.12 god.OverView . 125

C.13 god.OverView.Dialog . 127

C.14 god.Selection . 128

C.15 god.Selection.MarkerSet . 130

C.16 god.Selection.SinglePositionMarkerSet 131

C.17 god.Selection.TableModel . 132

C.18 god.View . 133

C.19 god.ViewFrame . 135

C.20 god.ViewFrame.QueryDialog 137

Chapter 1

Introduction

About one year ago, I joined a lecture about Geographical Information Sys-
tems (GIS). One of the readers was C. Parent presenting the model principles
described in [1] and [2].

Later I was occupied in terms of a semester work to create a data model for
public transportation networks. There were two main goals to reach:

1. It must serve as geographical data basis for the schematization algo-
rithm. An example of such an schematized map is shown in figure 1.1.
The algorithm to generate schematic maps is described in [7]

2. It should answer general queries about the transportation network,
e.g. What is the nearest station to the football stadium?

During the semester work, whose results can be found in [8] and [9], I re-
membered the concepts presented in the lecture described above - while
building abstract spatial types by myself on the model level. There were
several geographical constraints which we could not model directly. I also
implemented a viewer to visualize the transportation network’s geographic
reality. At this moment it came to my mind that it would be very nice to
have a generic viewer visualizing types from any GIS model. Therefore, it is
also important to have predefined geographical abstract data types as basic
elements.

After all, I decided to develop such a framework including a generic viewer
and editor application within the scope of this diploma thesis.

As persistence base, OMS Java seemed predestined because it is open, ex-
tensible and the scope of research in the GLOBIS group where I developped
already my semester work.

To be compatible with OMS Java and to be platform independent I chose
Java as implementation environment. But I was sceptical whether it would

9

Figure 1.1: example of a schematized map

be possible to realize a fast graphical subsystem - this is one of the most
important aspects for practical use from geographic engineer’s point of view,
if visualisation were slow, work becomes very resinous and intuitive insight
to data is decreased.

The set of spatial abstract data types and the spatial constraints as well
as the overall architecture of the Geographical Object Management System
(GOMS) is described in Chapter 2. The Design of the middle layer for basic
data structures and spatial indexing is the scope of Chapter 3. Chapter 4
provides design documentation for the viewer and editor application Geo-
graphical Object Desktop. Conclusions are presented in Chapter 5. Finally
there is an appendix containing detailed class documentation to enable fu-
ture extensions and adaptions.

Chapter 2

Basic Concepts

The basic concepts are based on the principles developed at Laboratoire de
Base de Données at EPFL in [1] and [2]. There were two fundamental
principles we took into account:

i) A slim and orthogonal set of basic abstract types for geographical1 ob-
jects. The hierarchy within this set is shown in the figure 2.1. The idea is
to define own normal concrete types inherited from a leaf or even generic
concrete types inherited from a branch - this will be explained in section
2.1.

ii) Spatial constraints for associations enumerated in figure 2.2.

2.1 Hierarchy of abstract geographical types

We decided to support only simple geo types from figure 2.2 in order to keep
the framework manageable. And beside this reason the complex types are
more rare and can be built out of the simple types. The resulting hierarchy
of GObject2 types including the basic attributes and methods is shown in
figure 2.3.

Examples of derived concrete geographic types are those of table 2.1. Where
Source, Pond, River and Lake are derived from WaterBody as well as from
their particular abstract type. Similar with Village which is a Town and a
GPoint - analogously a City is a GArea and a Town.

An advantage of generic concrete types, such as WaterBody is to be able
to define common attributes there. An example were pollution which is
meaningful for all, Source, Pond, River and Lake thus it would be placed

1’geographical’ and ’spatial’ can be considered as synonym in this report
2stands for ’geographical object’ through all over the project we abbreviated geograph-

ical and geographically resp. by ’G’ followed by the related substantiv or verb

2.1 Hierarchy of abstract geographical types 11

Figure 2.1: Hierarchy of spatial abstract data types due to [2]

Figure 2.2: Spatial constraints on associations due to [2]

2.1 Hierarchy of abstract geographical types 12

Figure 2.3: Hierarchy of GObject types

abstract type derived concrete types

GObject WaterBody, Town
GPoint Source, Tree, Antenna, Pond, Village
GLine Street, Wire
GArea Country, Lake, Island, City
GOrientedLine River, Pipeline

Table 2.1: examples of concrete geographical types

into the WaterBody type. Another advantage is the common treatment
which could be applied to all subtypes of a generic type - specially declaring
associations anchored at a collection of generic type. Figure 2.4 gives an
example for the data model and DDL3 for the WaterBodies example.

This concept of generic types needs multiple inheritance, which is not pro-
vided directly in Java nor in the current version of OMS Java - for that
reason this is not part of the present implementation. But it is possible to
partly imitate the generic types by defining pseudo-generic collections hav-
ing GObject as their membertype. The members of such a collection can
profit from common treatment but not from having same attributes declared
just once. Figure 2.5 shows the WaterBodies example using pseudo-generic
collections.

3Data Definition Language

2.1 Hierarchy of abstract geographical types 13

Figure 2.4: the WaterBodies example

Figure 2.5: WaterBodies example using pseudo-generic collections

2.2 Geographical Constraints 14

2.2 Geographical Constraints

Geographical constraints express spatial conditions of and between gOb-
jects4. While modelling a database, the DB engineer often needs to specify
such constraints to force consistency. For example, lakes need to be spatially
disjoint or islands need to be within a lake.

Without the ability of specifying such geographical constraints, the engineer
would have to implement algorithms by himself to check the geographical
consistency. To use a GIS providing geographical constraints seems to be
the preferable solution for two main reasons:

• From an abstract geometric perspective there are just a manageable
amount of constraints. Thus it seems unneccessary and fault-prone
to implement checking algorithms on a higher logical layer again and
again.

• If constraints can be integrated to the data model directly, this im-
proves the comprehensibility of the whole project. Imagine a visual
data model including constraints compared to a list of specifications
for the checking-algorithms.

Further, geographical constraints make it possible to chose from 3 different
association managing alternatives:

1. Associations are generated automatically. Consider the following ex-
ample: Lakes have Islands, where have is association with inclusion
(see figure 2.2) constraint. A pair (lake l, island i) is inserted automat-
ically into have, if i is geometrically included within l. This approach
leads to redundancy - which is an advantage in terms of accelerated
queries.

2. Associations are not stored at all. This is possible, because the ge-
ometry of the gObjects in the involved collections defines implicitely
which pairs are members of the association. This alternative does not
lead to redundant storing. This approach is only possible for associ-
ations which are declared to have the spatial constraint as sufficient
condition for a pair to be contained. (In ”Lakes have Islands” were
have such an example but in ”Countries have capital Towns” is have
capital an example, where the containing constraint is not sufficient.)

3. The User specifies the contents of associations manually. In this case,
The Constraint checker becomes the role of a verifyer. This solution

4types are indicated with a capital first letter whereas objects(instances) of a certain
type are written by that typename with a small first letter

2.2 Geographical Constraints 15

constraint object type specification

meanderShape GLine/GArea: The angles of every two neigh-
boured edges must be either
90 or 270 degrees

rectShape GLine/GArea: Must have four edges, formed
to a rectangle

straightLine GLine Must have exactly 2 vertices
cycleLine GLine 1st and last vertex must be at

same position
openLine GLine Must not intersect itself -

touching is not allowed either

Table 2.2: object constraints

leads to redundancy as well - which is good for quality assurance in
this case.

Additionally to the constraints on associations described conceptually at
the beginning of this chapter, we introduce the object and layer constraints
here, thus we distinguish between 3 types of geographical constraints now:

Object constraints specify restrictions on gObjects without involving
any other. Those are defined on a certain layer5, which tells latter to contain
just gObjects fulfilling the particular constraint, i.e. if a gObject does not
satisfy the constraint it is set as invalid. Table 2.2 shows an expandable list
of object constraints.

Figure 2.6 shows examples of valid and invalid gObjects in context of the
object constraints.

Object constraints could be combined by boolean operators, for example:

collection PathAroundAcres: (meanderShape ∩ cycleLine) set

of gLine;

This concept is not part of our implementation and would need a checking
algorithm to verify such boolean expressions, for example it is prohibited to
specify:

(straightLine ∪ cycleLine)

Figure 2.7 gives a basic idea of possible combinations and could serve as a
base for such an algorithm.

5Layer denotes a collection with geographical membertype

2.2 Geographical Constraints 16

Figure 2.6: illustrated examples for object constraints

Figure 2.7: set diagram for object constraints

2.2 Geographical Constraints 17

constraint specification

disjoint None of the gObjects must have any common
point with any other gObject in this layer

touching Each pair of gObjects within the layer must
be disjoint or at most touching.

Table 2.3: layer constraints

Layer constraints are used to describe conditions between the various
gObjects within a layer. Those restrictions must be valid for all possible
pairs within the layer. If a pair failes, its two gObjects are invalidated.
Table 2.3 gives a list of possible layer constraints.

Association constraints specify a spatial condition that need to be es-
tablished for every pair of gObjects within a certain association.

These constraints are combined with the conventional specification of cardi-
nalities, which have the be fulfilled as well. Thus looking at the WaterBodies
example, there need to be for every Island i exactly 1 pair in the have asso-
ciation relating to a lake whose area contains the area of i completely. For
a lake there can exist an arbitrary amount of associated islands.

Table 2.4 shows an expandable list of association constraints. Those are
strongly related to the rows in figure 2.2. In that table the first four con-
straints are symetric the next two are directed and the last one is a special
case of spatial aggregation. All the association constraints are to be under-
stood in context of specified cardinalities, thus the containing constraint,
for example, would be written in its full version as follows:

Any object from source layer must contain between tmin and tmax gObjects
from target layer. And any object from target layer must be contained within
between smin and smax gObjects from source layer.

Where (smin, smax) and (tmin, tmax) are the specified cardinalities for
source and target layer.

In the following, we will describe the possible spatial relationships between
a pair of gObjects. Note that some are redefined compared to figure 2.2.
These redefinitions seem to be less pure than the original ones, but more
intuitive and suitable for concrete geographical reality6. Figures 2.8, 2.9 and
2.10 illustrate the specifications below.

disjoint Every two gObjects are defined to be disjoint if they share not

6But also with these adapted specifications we are still sceptical - practical use of the
framework must decide about further refinements, specially in touching and crossing

2.2 Geographical Constraints 18

constraint specification

disjoint Objects must have disjoint geometries
touching Objects must touch
overlapping Objects must overlap
equal Objects must be of equal geometry

crossing Source object must cross target object
containing Source object must contain target object

consisting of Union of target objects must form source ob-
ject

Table 2.4: association constraints

even one common point.

touching Two points are touching if they are equal. A point is touching
a line or an area, if it is at a vertex position. A line is touching a
VertexShape if both are disjoint with exception of one or both of line’s
endings which must coincide with a vertex of the vertexShape. Two
areas are touching, if they are disjoint except sharing of edges.

overlapping Two gObjects are defined to be overlapping, if they are of
the same dimension and share a common part which has the same
dimension as themselves.

equal Equal are those two gObjects that have identical geometric represen-
tations.

crossing A source gObject go is crossing a target gObject to, if go is of
linear type on one hand.
On the other hand:
if to is a point, to needs to be a vertex of go.
if to is a line, go and to need to have a point of intersection, which is
none of the four endings.
if to is an area, there must be a common part of linear dimension.

containing One gObject is containing another one, if every point of the
latter is part of the former.

consistingOf One gObject is consisting of others, if the union of the latter
ones result in geometry of the former one.

2.2 Geographical Constraints 19

Figure 2.8: symetric spatial relationships

Figure 2.9: non-symetric spatial relationships

Figure 2.10: spatial aggregation

2.3 The GOMS Architecture 20

Figure 2.11: architecture of GOMS

2.3 The GOMS Architecture

GOMS consists of OMS Java ([3], [4] and [6]) and the overlaid layer for
geographical structures gStructure. This design is intended to decouple
client applications from persistent systems. So the existing client application
GOD7, for example, can be ported without changes using other architectures
providing their adapted version of gStructure. Figure 2.11 illustrates these
principles.

In the current implementation, the extensions in OMS Java are summarized
to a package called gisExtensions and limited to DDL-Parser modifications
supporting the specification of geographical constraints.

Other useful front-end applications are for example the following:

• A very slim web viewer without features to modify data

• A tool to manage import and export facilities

The design of the gStructure for OMS Java and the client application GOD
are documented in the following two chapters.

7Geographical Object Desktop, pronounced ”Geowdee”, to avoid confusion.

Chapter 3

Geographical Structure Base

Due to figure 2.11 there is an abstraction layer called gStructure between
persistence system and Geographical Object Desktop and other client appli-
cations. So those client applications could be used - without any changes -
on other persistence systems if gStructure has been adapted for it. There
are two more advantages of having the gStructure layer:

1. Encapsulation of index-revalidating after modifications on gObjects.
All spatial indices are based on the principle of partitioning the space
into cells. As a result queries which depend on a given location must
not scan all the gObjects anymore, but only those cells which are at
that location. But if any gObject is translated for example, it might
fall into a different cell than before. Thus every spatial modification
requires the index structure to be revalidated, which is not trivial and
hidden from client applications through the gStructure.

2. For performance reasons there are a lot of low level representations and
redundant attributes within gStructure which need not to be visible
for a client application.

Figure 3.1 gives an overview of gStructure and its relations to the underlying
and the client layer, whereas figure 3.2 shows an UML class diagram of it.

The centre of gStructure is the Model, which is the representation of the
data model with its collections, associations and constraints. It is also the
ressource of AbstractViews to get its data to visualize.

Another core class is GObject which represents the base of all gObjects.

GSet is an abstract class to contain a set of gObjects. Concrete subclasses
typically use spatial index structures to manage those sets.

Class Div is an auxiliary class which contains static methods for general
purposes.

3.1 GObjects 22

Figure 3.1: anatomy of the geographical structure base

The details concerning the classes in gStructure can be read in the following
sections.

3.1 GObjects

GObject

In the present implementation of gStructure based on OMS Java, GObject
is a subclass of OMSInstance. All coordinates are integer numbers. The
Decisive points for those instead of floating point are the following:

• Exact and fast arithmetics

• Transparent to users and programmers: Users see the model coordi-
nates in a high zoom level as squares and thus can easily recognize
what is touching or intersecting etc. Programmers do not need to care
about additional FP complexity.

• Same density overall the range of maps. FP numbers have higher
granularity around 0.

3.1 GObjects 23

Figure 3.2: class diagram of gStructure

3.1 GObjects 24

• Fractional numbers could be emulated in Dialogs by defining some
digits as decimal places.

We chose int instead of long to be compatible with OMS Java and the classes
from java.awt package.

The common functionallity of the subclasses is implemented in this abstract
class, which contains the following fields and methods: There is a field
registeredSets where all gSets are stored that contain this gObject and
want to be informed of spatial modifications to revalidate themselves.

There are the final methods translate(..) and copy() which call trans-
lateConcrete(..) and copyConcrete(..) in the concrete subclass between
execution of general code. For more details refer to the API Reference ap-
pendix

Other important methods to mention are getMemberValue(..) and setAt-
tributeValue(..) which are the public interface towards client applications
to access non-spatial data of the gObjects.

All the boolean methods of spatial conditions where constraints are based
on, are abstactly declared in GObject, so it is guaranteed to constraint
checkers that every gObject is able to know about its spatial relations to
others. Those are:

• boolean gDisjoint(GObject o)

• boolean gEquals(GObject o)

• boolean gContains(GObject o)

• boolean gTouches(GObject o)

• boolean gOverlaps(GObject o)

• boolean gCrosses(GObject o)

There is a public init()method in GObject as well. This is called by frame-
work to initialise transient fields of the gObject. The concrete subclasses
can overwrite the init() method (but need to call the super.init() at
the beginning) to initialise their own transient fields. There is a mecha-
nism to prevent clients from unintended initialising of existing gObjects -
which would violate consistency with the registered indices: Further calls of
init() on a certain gObject are without effect.

There is an abstract paint operation which must be implemented within
every concrete subclass. This paint method needs to know about graphics
context to draw within as well as about offset and scale factor (which are
attributes of AbstractView). Thus its signature is the following:

3.1 GObjects 25

public abstract void paint(Graphics2D g2, AbstractView v);

VertexShape & Vertex

This is an abstract class to summarize common fields and behaviour of GLine
and GArea. Moreover it enables common treatment of those under certain
circumstances.

The most important fields are the two arrays xp and yp representing the
coordinates of the vertices of the VertexShape. This low-level reprentation
is though fast for computational geometry, but prone to inconsistency due
to wrong handling. Thus these arrays are just package-visible.

As a public interface to modify these vertices there exist the Vertex class.
Client layers of gStructure get a vertex from both GLine and GArea via

public Vertex getVertex(int pos)

where pos is the number in the desired vertex within the whole sequence.
On the received Vertex object there are 3 operations available to modify the
VertexShape in its form:

• public void moveTo(int x, int y)

• public void addNeighbour(int x, int y, boolean before)

• public void remove()

where before is an indicator whether the new vertex shall be inserted before
or afterwards this vertex within the whole sequence.

These modifying operations involve a revalidating of spatial indexed con-
tainers - as descibed in the beginning of chapter 3 - which is performed
automatically, hidden from the client layer.

There are some more methods in the Vertex class to get information about
vertices. Refer to figure 3.2 or the API Reference appendix to get more
details.

GPoint

GPoint is the concrete class from which any point-shaped objects will inherit
from. Examples are sources, trees, antennas etc. - of course it depends on
the circumstances whether an object might be modelled as point-shaped,
linear or as area.

The operations available for GPoint are quite intuitivly comprehensable and
will not be documented further here. For more information refer to figure
3.2 or the API Reference appendix.

3.1 GObjects 26

GLine

GLine consists of an ordered set of vertices inherited form VertexShape,
which result in a sequence of edges. Its public length() method thus just
summarizes the length of all segments.

Most of GLine’s functionallity is covered by VertexShape. But there are
two methods which might not be underestimated: The implementations
of boolean gContains(GObject o) and boolean gTouches(GObject o) -
they are more complicated than one might guess, but documented in detail
within code.

GOrientedLine is a subclass of GLine without any additional fields - the set
of vertices was already ordered in GLine and gets the semantics of direc-
tion quite naturaly. GOrientedLine overwrites just the paint method as a
hint for visualisation and adding two more methods for further thinkable
constraints:

• boolean startsAt(double x, double y)

• boolean endsAt(double x, double y)

GArea

GArea is the base of concrete 2 dimensional entities. It is specified to be a
simple polygon, which is defined as being free of self-intersections, if this con-
dition is violated, it will be set to invalid. Checking the simplicity of an area
is performed as an implicit constraint in GObject.checkObjectConstraints().
Similar to GLine, GArea consists of a sequence of points. The chosen design
is the same as in java.awt.Polygon: A GAera with n vertices consists of n
points. (In other systems it would be built out of n+1 points where point0
and pointn share the same position - not in gStructure This decision al-
lows us to profit from all built-in methods of java.awt.Polygon. GArea is
wrapping java.awt.Polygon - more precisely even infiltrating - because it is
coupled not just by one reference to the polygon: While constructing, the
Polygon is instantiated first and afterwards those coordinate arrays as well
as the bounds attribute are referenced by the own attributes. This is illus-
trated in figure 3.3. This design can also be seen as a so-called Proxy, which
is described in [18].

Doing so, we can use those attributes of the polygon directly without need of
synchronizing own attributes with those of the polygon. One might ask why
not just extending GArea from Polygon - the answer is that Java does not
allow multiple inheritance and GArea must be a GObject, a VertexShape
more precisely. So another might ask why not just declaring

• abstract Rectangle getBounds()

3.2 Index structures - GSets 27

Figure 3.3: GArea infiltrates java.awt.Polygon

• abstract int [] getXp()

• abstract int [] getXp()

in GObject and VertexShape and then implement those accessor methods
for GArea as follows:

Rectangle getBounds() return p.bounds;

(analogous for the others). This would beware from complicated infiltrating
mechanism. Well, the reason is again graphic performance on the one hand
- accessing fields is faster than invoking methods. And on the other hand,
using the attributes directly makes the code more readable and smaller in
size.

Another thing to mention is the algortihm to calculate polygon area, which
is not trivial. The principle of the algorithm is illustrated by an example in
figure 3.4

3.2 Index structures - GSets

GSet is an abstract container for GObjects only - thus the signature of the
basic methods defined on GSet are the following:

• add(GObject)

• remove(GObject)

• boolean contains(GObject)

• GSet[] toArray()

3.2 Index structures - GSets 28

Figure 3.4: calculation of polygon area

• GSet.GIterator iterator()

where GSet.GIterator returns a GObject instead of Object in its next()

method.

There is a lot of additional operations defined for GSet whose purpose can
be understood intuitively and will not be documented further in this part.
For more details see API Reference appendix.

GSet may - as its name indicates - contain every gObject just once without
storing any sequential order on them. For managing multiple and ordered
occurrences we use the Collection1 class. These two - GSet and Collection -
can be used in combination, where the task of GSet is the spatial indexing
of the collection.

But gSets as well as collections may exist in single form too. For exam-
ple, results of range queries are of GSet type and collections having non-
geographical mebertype have of course no spatial indices.

There are at the moment two different implementations of GSet:

• OpenQuadTree - spatially indexed based on Quad-Tree principles

• GHashSet - non spatially indexed

We will not write here about GHashSet, because it is mainly a wrapper of
java.util.HashSet. Refer to the API Reference appendix to get more detailed
information. But it is worth to write more about OpenQuadTree.

1in current implementation with old name CollectionWrapper

3.3 Model & View 29

OpenQuadTree uses a data-driven2 indexing strategty, which divides the
space recursively into four sub-partitions. Therefore there are classes Inter-
nalNode and Leaf, which are both extensions of abstract Node class. We
called this class OpenQuadTree, because the indexed area is not needed to
be limited: border-partitions always represent a region of infinite area. This
bewares from rebuilding the tree everytime gObjects are inserted, which are
outside model’s MBR 3

InternalNode points to its four sub-partitions which are representeed by
static type Node - dynamically they can be either InternalNode or Leaf,
depending on whether this partition is devided again or not.

A Leaf contains those gObjects which are lying within or overlapping its re-
gion. If a specified amount is exceeded, it will be changed to an InternalNode
and its region split into four new Leaves. The geometrical center of those
four new leaves is set to the center of gravity of the gObjects contained.
Refer to figure 3.5 for illustration of splitting priciple.

There is a special case in which splitting will not be performed: If the
region represented by the leaf became so small that it is about average size
of contained gObjects. Splitting under those circumstances would lead to
infinit splitting, because all gObjects contained in the original leaf would be
pushed to all children as well! Such Leaves are set to be unsplittable.

There are a lot of other indexing strategies which would be implemented in
further GSet extensions. General information about spatial indexing data
structures can be found in [10], [17] and [15]

3.3 Model & View

The model is the center of gStructure, since it contains the following 3 arrays
as attributes:

• public GSet [] layers;

• public Collection [] collections;

• public Association [] associations;

where layers are those collections which have a geographical membertype
and thus are referenced by their indices. The model structure is illustrated4

2Means: partitions are spread according to object density (vs. space-driven: where
space is divided homogenously

3(rectangular) minimum bounding region
4all over this report rounded rectangles are used to idicate instances whereas normal

rectangles are used for classes. Furthermore rounded rectangles containing other rounded
rectangles indicate referencing.

3.3 Model & View 30

Figure 3.5: sketch of an OpenQuadTree

in figure 3.6 The basic operations to build and access the model strucuture
can be found in the API Reference appendix

Collection and Association are wrapper types referencing OMCollection and
OMBinCollection in the present implementation of gStructure. Wrapping
is neccessary to provide an independent abstraction to client applications.
Within Collection and Association there are the two fields parents and
covered. Former is to establish the sub-/super-collection structure with the
other collections and latter is to specify the collection to be fully covered by
sub-collections. This means that all the contained objects need to exist in
at least one sub-collection. If the collection is set to covered, no objects can
be added directly to it - to ensure consistency. Thus, the objects must be
added to a sub-collection from where they are inserted automatically also
to its parents. The principle of indexing a collection by an overlaid gSet can
be seen in figure 3.7 (in combination with figure 3.5 where OpenQuadTree
class as an extension of GSet is illustrated)

The Model class provides the following 3 important geometric operations:

• public Rectangle mbr()

• public Point getMiddle()

• public GSet range(Rectangle r, boolean enclosing)

3.3 Model & View 31

Figure 3.6: model structure for the WaterBodies example

Figure 3.7: collection indexed by a gSet

3.3 Model & View 32

Figure 3.8: illustration of a view

where mbr() gives an MBR of the whole model content and range(..)

returns the gObjects in the specified rectangle looking at all its layers.

The base of all views is class AbstractView. It provides fields5 for offset and
scale as shown in figure 3.8.

Additionally, there are methods for coordinate transformations, illustrated
in figures 3.9 and 3.10. Coordinate transformations are used for example to
determine object which was clicked (view to model) and to paint the object
in a view (model to view).

The Principle for coordinate transformation is the following

view to model: Find the model pixel (xm, ym) which
contains the middle of a given view
pixel (xv, yv)

model to view: Vice versa

This leads to the following formula for coordinate transformation of a
point:

xm(xv) = x0 +
⌊
xv+ 1

2
zoom

⌋
ym(yv) = y0 +

⌊
yv+ 1

2
zoom

⌋
5fields are indicated in figures by underlined text

3.3 Model & View 33

Figure 3.9: coordinate transformation (view: zoomed out)

Figure 3.10: coordinate transformation (view: zoomed in)

3.4 Constraints 34

xv(xm) =
⌊
(xm− x0 + 1

2) ∗ zoom
⌋

yv(ym) =
⌊
(ym− y0 + 1

2) ∗ zoom
⌋

In the AbstractView class there are methods for transforming rectangles and
polygons as a whole, i.e. they just transform all the vertices.

No view does store any data itself, it just visualizes data from the model.
More about this principle - called MVC - can be read in [18]. In the current
implementation, the MVC is realized by the Observer Pattern - explained
in [18] as well.

3.4 Constraints

All the classes representing constraints are separated to the sub-package
gStructure.constraints. Figure 3.11 shows an overview of that package.

As described in chapter 2.2 there are 3 types of geographical constraints:
object, layer and association constraints. Those are represented by basic
abstract classes GObjectConstraint, GLayerConstraint and GAssociation-
Constraint.

GObjectConstraint forces its subclasses to implement the following
method:

public abstract boolean check(GObject o);

where concrete constraint classes, such as GCycleLineConstraint have code
to check whether the given gObject satisfies the condition or not. All the
object-constraints are checked by invoking the checkObjectConstraints()
of a GObject instance - if any of the constraints failed, this gObject will be
set to be invalid.

GLayerConstraint and GAssociationConstraint have similarly the

public abstract boolean checkConcrete(GObject source, GObject

target);

method which must be implemented by those concrete subclasses.

Within GLayerConstraint, there is the method check(Rectangle areaToCheck)
to check a concrete layer constraint within a specified area. If invoked, all
the gObjects o of that layer and within areaToCheck will be checked to sat-
isfy the checkConcrete(o, candidate) condition - where candidate is every
other gObject within areaToCheck. If a gObject failes, its valid attribute
will be set to false.

3.4 Constraints 35

Figure 3.11: content of package gStructure.constraint

3.4 Constraints 36

GAssociationConstraint as well has a method
check(Rectangle areaToCheck) to check a concrete association constraint
within a specified area. This check method is outlined as follows:

1. Check every gObject o from source layer to satisfy the checkCon-
crete(o, t) for tmin to tmax gObjects t from target-layer: If failed:
o.setValid(false)

2. Check every gObject o from target layer to satisfy the checkCon-
crete(s, o) for smin to smax gObjects s from source-layer: If failed:
o.setValid(false)

where source and target-layer as well as smin, smax, tmin, tmax are the
attributes declared within GAssociationConstraint to specify the constraint.
As an example, the have constraint from the WaterBodies example has Lakes
as source layer, Islands as target layer and (1, 1), (0, *) as (smin, smax),
(tmin, tmax).

Chapter 4

Geographical Object
Desktop

The Geographical Object Desktop is a front-end application built on top of
the gStructure layer. The main purposes of GOD are the following:

• visualizing and thus increase comprehensability of correlations in geo-
graphical data

• editing of both logical and spatial data, where spatial editing is per-
formed by mouse clicking and dragging

• interface for queries, where spatial results are mapped to visual output

Figure 4.1 shows a screenshot of the geographical Object Desktop. And figure
4.2 shows the structure of the GUI components, paricularly the custom ones
- comparison to figure 4.1 might increase the readability.

There are 3 tables involved each accessing its own TableModel. All those
TableModels have not a direct graphical representation but are included to
figure 4.2 to show the essence of the tables. All the TableModels are embed-
ded as member classes within a related outer class. To give an understanding
of TableModel-principle, we present the method signatures they implement
in table 4.1.

All these methods are called by Java’s table-renderer and -editor to plug in
the custom functionality. All three custom TableModels are extensions of
AbstractTableModel from the javax.swing library. More information about
TableModels in general can be found in [14].

After this brief introduction to GUI structure and TableModels in particular,
we provide an overview of the whole god package in UML notation in figure
4.3.

38

Figure 4.1: screenshot of GOD

returns method name

int getColumnCount()

int getRowCount()

String getColumnName(int col)

Object getValueAt(int row, int col)

Class getColumnClass(int col)

boolean isCellEditable(int row, int col)

void setValueAt(Object value, int row, int col)

Table 4.1: method signatures in custom TableModel classes

39

Figure 4.2: GUI structure of GOD

GOD class is the center of the application. It is actually an extension of
JApplet for being able to be displayed within browsers as well1 In God there
are the important fields listed in 4.2 which indicate its central managing role:

type fieldname

JMenuBar menuBar

JDesktopPane desktop

Navigator navigator

Clipboard clipboard

Model model

ArrayList viewFrames

ArrayList selections

ArrayList mapImages

Table 4.2: important fields within the God class

1For the current implementation, a policy file is neccessary to allow access to local files,
refer to [11] for use of policytool

40

Figure 4.3: class diagram of god package

41

ViewFrame class represents a container of a view, legend and a collec-
tionTable which can be seen in figure 4.2. It is an extension of JInternal-
Frame and thus able to be pushed to desktop declared in God. All the
window operations, such as maximizing, minimizing, translating etc. are
provided to JInternalFrame and thus did not need further code - except the
listening to and handling of InternalFrameEvents to revalidate navigator’s
tables and overview in case of resizing, closing or activating a viewFrame.

ViewFrame is the anchor for the model to inform about updates. class
ViewFrame implements the Observer interface and thus is able to be reg-
istered within an Observable class, which is inherited by Model. Every
viewFrame registers itself in the model during execution of constructor.

There is a member class QueryDialog within ViewFrame which is just a
simple dialog to get the queryString entered by the user. The contents
of queryString is forwarded to model’s performQuery(..) method which
returns an iterator containing resulting objects.

All the other classes are documented in detail in the following sections.

4.1 Navigator 42

Figure 4.4: construction of jTree

4.1 Navigator

The navigator is the container of the two tables for the existing selections
and mapImages as well as of the jTree which shows the collections and
associations in the open model. It furthermore contains an overView, which
shows the whole Minimung Bounding Region (MBR) of the model in a very
zoomed out manner.

To build up the jTree there exists a method buildTree() within which
insertIntoTree(..) is called twice, once for the collections and once for
the associations within the model. Because every collection as well as ev-
ery association might have multiple parents, it is not trivial to map these
structurs into a tree. The chosen solution inserts nodes which have multiple
parents as children to all the nodes representing parents. Thus every collec-
tion and association might have multiple representations within the jTree.
Figure 4.4 illustrates the basic idea of the algorithm.

4.2 Overview 43

Figure 4.5: screenshot of OverView.Dialog

4.2 Overview

The Overview class is an extended JPanel which overwrites the paintCom-
ponent(..) method to draw the contents of chosen layers within the whole
model area. Also the positions of all views are painted there.

The visibleLayers field holds references to the displayed layers. This
design was chosen because it is a time-expensive operation to draw whole
contents of layers - specially if they contain huge amount of gObjects. So
the decision is up to the user, which layers give a good overview but in the
same time do not contain too many gObjects (for performance reason).

This user interaction is provided by the member class Dialog which is allowed
to modfify Overview’s visibleLayers field. The OverView.Dialog does
layout itself automatically due to available layers within the model. Figure
4.5 shows the Dialog.

4.3 View 44

4.3 View

The view class is inherited from gStructure.AbstractView where offset and
scale related to model are defined. Coordinate system and relation to
model’s coordinate system is already described in the section Model & View.

View is connected via viewFrame.god.model which ensures the central man-
aged model(s)2 are used. A method - as in Control - model() could simplify
code (encapsulting the reference-chain).

Further important references - taken into fields directly - are those of table
4.3.

type fieldname

Control control

Selection selection

MapImage mapImage

Table 4.3: important fields within view class

Where control is the handler of user interactions, described below, selection
lists the gObjects to be highlighted and mapImage points to any bitmap
which shall be painted as a background, e.g. a satellite image visualizing
landscape’s topography.

Most of View class’ code is within its paintComponent(..) method to
redraw the view anytime a window was modified or user interactions occur.
The principle of the painting procedure is illustrated in figure 4.6

2In the current implementation there can only be one model opended at the same time.

4.4 Selection 45

Figure 4.6: succession of View’s paint procedure

4.4 Selection

The Selection class is basically a GSet, contained gObjects are highlighted
in those viewers, which refer the selection. The fundamental question was
whether the selection should belong to the model and thus being the same
within all layers or whether it shall be part of every single view. We chose
another more flexible solution where the user is free to decide how many
selections exist and within which views those are visualized. This is achieved
by encapsulating a selection to this separate class and having a selection

attribute within the View class. Refer to figure 4.7 to see these connections
illustrated.

There are, for example, the following situations in which the user might
prefer different selection among different views: While comparing different
groups of gObjects in terms of a certain (colorized) attributes, or while
editing3 at different map locations at the ”same” time, i.e. simultanously

Sometimes users want to have the same gObject-groups visualized by dif-
ferent attributes at the same time which is an example situation where it is
neccessary to have the same selection in multiple views.

Worth mentioning are the following methods (the others can be found in
the API Reference appendix):

1. Vertex edgeIn(Rectangle tolerance)

2. void paint(Graphics2D g2, View v)

3editing always is performed on selected gObjects

4.4 Selection 46

Figure 4.7: structure of views and their selections

where the first is to ask whether there is an edge of a vertexShape intersect-
ing the specified (mouse) tolerance region. This is especially asked from a
control which decides to insert a new vertex if the mouse was dragged on
an edge. The second is due to figure 4.6 to draw all the selection markers
within the view. All the other methods are described within the API Ref-
erence appendix.

Member classes

Besides TableModel, Selection has two more member classes: MarkerSet
and the extension SinglePositionMarkerSet. A Marker has the meaning of
a dot displayed at every gPoint and vertex the selection contains. Thus
MarkerSet is a helper class to summarize such markers. A markerSet is
needed as argument in Control’s getMagnet(..) method to specify which
markers are not possible as magnet. While translating gObjects, all the
markers of selected gObjects are given to getMagnet(..) because those
gObjects should latch at every other marker but not with itself. Method
selMarkers() therefore returns a markerSet containing all markers of the
selection. For a better understanding, see figure 4.8, particularly look at
the markers denoted by possible magnets.. - all the other ones are those

4.4 Selection 47

contained in markerSet.

While dragging just vertices - a single vertex or vertices of multiple selected
gObjects at the same position - just the markers representing those vertices
are given to getMagnet(..) as not valid. In this case a singlePosition-
MarkerSet is used, because while adding markers to it, they are checked to
share exactly the same position as those which are contained already. This
is important. Otherwise vertices which lie within tolerance region but do
not share the same position exactly would dragged together - this would
confuse the user. Method markersIn(..) is used to get such a singlePosi-
tionMarkerSet of the selection. For a better understanding, see figure 4.9,
regard the markers denoted by possible magnets.. - all the other ones are
contained in singlePositionMarkerSet.

Furthermore there is a method moveTo(Point p) implemeted in SinglePo-
sitionMarkerSet to move all the dragged vertices using one line of code.
Also a a method release() can be found, which is invoked to remove all
the vertices which came to the position of one of its neighbours and the
dragMarkerSet’s storage is flushed there too.

4.5 Control 48

4.5 Control

Control has all the public handler methods called by Java’s event-manager
after user-interactions. One of those is

public void actionPerformed(ActionEvent e)

where the events of the popup menu - to cut, copy and paste - are handled.
Therefore the clipboard field within God class is used. Latter is of a library-
type Clipboard where instances of the Transferable-implementing Selection
class can be pushed into and taken from. Refer to [11] to read more about
this paradigm.

Within public void mouseClicked(MouseEvent e) the view’s selection is
modified in case of a single click. A new default gObject - of the type from
toppest visible layer within legend - is inserted in case of a double-click.

The drag engine

The following 4 methods form together the engine to handle the various drag
actions:

1. public void mouseMoved(MouseEvent e)

2. public void mousePressed(MouseEvent e)

3. public void mouseDragged(MouseEvent e)

4. public void mouseReleased(MouseEvent e)

Furthermore, there are several attributes serving as variables to the drag
engine which are listed in table 4.4

Within (1) the mouse cursor is set to different images depending whether it
is on vertex, on selection or else. This indicates to the user, what kind of a
drag is going to carry out.

Method (2) determines the dragMode and sets initial dragVariables. Table
4.5 shows the initial actions to be taken depending on mouse condition.
Notice the toppest possible row is executed and all lower rows are ommitted.

The heart of drag engine is embedded in (3). According to dragMode the
related drag actions are performed:

4.5 Control 49

dragging variable field purpose

int dragMode the mode of drag engine

int startXv, startYv position at beginning of drag action
int oldXv, oldYv ” at time of previous mouseDragged

execution
int currXv, currYv ” at time of present mouseDragged ex-

ecution

singlePosMarkerSet markers involved in vertex moving
selMarkerSet all markers of the selection

Point anchorM model position of marker nearest to
mouse

Point mouseAnchorM model pos. of mouse

boolean movedAcrossViews was the selection dragged to another
view?

targetView and which view was the target?

Table 4.4: variables for drag engine

mouse condition action

left button
on selection marker set move-vertex mode
on area’s edge ∪ ALT + on line’s edge insert vertex v;

add v to empty singlePos-
MarkerSet;
set move-vertex mode

on selected element init anchors;
set selMarkerSet;
set move-selection mode

on unselected but visible element(s) select them;
refresh because of old selec-
tion;
init anchors;
set move-selection mode

else set new-selection mode

middle button init anchors;
set move-content mode

right button set change-zoom mode

Table 4.5: initialising dragMode

4.5 Control 50

mode is move-selection :
actions due to figure 4.8;
repaint only neccessary area;

mode is move-content :
view.x0 += mouseAnchorM.x - mousePosM.x;
view.y0 += mouseAnchorM.y - mousePosM.y;
v.repaint();

mode is change-zoom :
store view-middle;
zoom = zoom ∗ constcurrY v−oldY v;
restore view-middle;
repaint();

mode is move-vertex :
actions due to figure 4.9;
repaint only neccessary area;

Finally, (4) selects elements in case of new-selection mode. It checks for
vertices being moved to its neighbours and are thus neccessary to be removed
in case of move-vertex mode. If mode was move-selection or move-vertex,
the geographical constraints need to be checked. In any case, mode is set
to idle, and the model is told to notify all views about updates and the
navigator is told to refresh the selection table.

4.5 Control 51

Figure 4.8: algortihm for magnetically moving objects

Figure 4.9: algortihm for magnetically moving vertices

4.6 Legend 52

4.6 Legend

The Legend class itself is just a slightly extended JScrollPane containing
objects of the more code-intensive class LegendItem.

While constructing a legend, legendItems - one per layer - are inserted. They
get a generated default color. There is furthermore a method rebuild()

which must be invoked after having changed the order of the contained
legenItems. The order of those - stored in the ArrayList attribute items -
specifies the order of painting the corresponding layers, see figure 4.6.

LegendItem class contains in the present implementation among other the
important fields listed in table 4.6

type fieldname description

Legend legend container
GSet layer layer, represented by the item

boolean visible shall the layer’s gObjects be
painted or not?

boolean shrinked mode of graphical representa-
tion of the item

Color uniqueColor Color, which all the gObjects
in the layer shall be painted
with - null, if colorizing shall
be performed according to a
member

Object colorizingMember if uniqueColor is null, this
field specifies the member
which is used for colorizing the
layer’s gObjects.

Table 4.6: important fields within LegendItem class

The visible, uniqueColor and colorizingMember fields are regarded while
processing the paint procedure of the view. In combination with colorizing-
Member there are some more attributes declared in the LegendItem class to
specify start- and end-Color and the according values. 4

The method mouseDragged(..) is used to handle user’s dragging inter-
actions to change the order of the items within the legend. Whereas the
mouseClicked(..) method handles toggling of the visibility and the shrink-
ing button (see figure 4.1) and as well to bring the so-called LegendItemDi-
alog to the screen in case of a double-click.

4see also section future work to read about mapping member values to graphical char-
acteristics

4.6 Legend 53

Figure 4.10: screenshot of a legenItemDialog

LegendItemDialog (figure 4.10) choses graphical representations of gObjects
contained in layer. Its outermost component is a JTaggedPane, open for
mapping values to other graphical characteristics than color, such as label
and size of stroke. Thus, the colorPane to chose unique color or color ac-
cording to member values, is put into the taggedPane as one among other
possible panes. There is an item attribute to have access to the fields
uniqueColor, colorizingMember etc. of the LegendItem, which are set
after the user clicked the OK button.

4.7 Map images 54

type fieldname description

String title Name
boolean visible Should it be painted?

String imageFilename File in which the image has its
persistent ressource

transient

Image

img Ressource of MapImage dur-
ing runtime

int x0, y0 Position of upper left corner in
model

int x1, y1 Position of lower right corner
in model

Table 4.7: fields within MapImage class

4.7 Map images

Map images are bitmaps which can be used as background within views to
increase orientation and visualizing quality. MapImage can be understood
best by referring to table 4.7 and to figure 4.11.

Similar to the AbstractView class, there are operations available within
MapImage to transform points from Model to MapImage coordinate system
and vice versa. The following formula are used for this:

xm(xi) = x0 +
⌊

xi+ 1
2

w/(x1−x0+1)

⌋
ym(yv) = y0 +

⌊
yi+ 1

2
h/(y1−y0+1)

⌋

xi(xm) =
⌊
(xm− x0 + 1

2) ∗ (w/(x1− x0 + 1))
⌋

yi(ym) =
⌊
(ym− y0 + 1

2) ∗ (h/(y1− y0 + 1))
⌋

where w is the width and h the height of the mapImage.

Within its paint(..) method, a mapImage needs to transform the corners
of the view to image coordinates to know which part of the image it shall
paint:

xi0 = min(w,max(0, xi(vx0)))
yi0 = min(h,max(0, yi(vy0)))

4.7 Map images 55

Figure 4.11: relations between MapImage, Model and View

xi1 = min(w,max(0, xi(vx1)))
yi1 = min(h,max(0, yi(vy1)))

where (vx0, vy0) and (vx1, vy1) are the antecedently calculated coordinates
of the view in model-coordinates. The min(w,..) and max(0,..) functions
are neccessary to ensure no painting occurs beyond the image’s margin.

The special case - view is just overlapping the mapImage - needs some
additional code to calculate the view coordinates5 where the image’s part is
to be displayed. This is documented within the code.

5normally just (0, 0) and (wview, hview)

Chapter 5

Conclusions

One main goal of this diploma thesis was to extend the persistent Ob-
ject Management System (OMS Java) with basic geographical types for
pointshaped, linear and areal entities. Furthermore it is possible to specify
geographical constraints on them such as being geographically disjoint or
containing.

Another goal was to implement a visual application to view and edit data
stored in geographical information systems modelled in GOMS using Java
environment. We were surprised about how fast graphic operations can be
carried out although the application is evaluated by Java’s virtual machine.
The visual application covers the following functionality:

• View of data in a 2 dimensional area like on a map - with different
levels of zoom

• Visualisation of user interests such as hiding certain collections of ob-
jects or assigning color according to value of a certain attribute

• Editing of data in an intuitive way, e.g. insertion of a new object
shall be possible by clicking on the location it should be placed and
changements of its form or location by dragging with the mouse.

• Interface to enter textual queries and mapping of spatial results to
selection, highlighted in view.

• Integration of bitmap images, such as satellite pictures, as background
to increase visualization of topographics or corellation to other data
represented within the bitmap

Figure 4.1 shows a screenshot of this application, called Geographical Object
Desktop.

5.1 Future Work 57

So far, the current implementation is a single user system. We thought about
directly realizing the architecture providing multi-user facility as shown in
figure 2.11, but to design and implement such a server turned out to be too
much work for diploma thesis.

5.1 Future Work

As mentioned, this system is a prototype. Thus, there is still a lot to im-
plement before being useful for practical work. At least the following points
need to be covered:

• Integration of undo / redo operations.

• Rebalancing operation on existing OpenQuadTree. At the moment,
elements are expected to be inserted randomly (in terms of location)
- and if this condition is not established, the tree might degenerate.
Also if they are taken out of the index, latter should be rebalanced
from time to time.

• Classes Collection1 and specially Association are incomplete for prac-
tical use.

• Implementation of association insertion strategies described in the sec-
tion Geographical constraints as well as a user interface to insert pairs
of objects manually.

• In class AbstractView there exist a static VERTICAL INV field, denoting
that model coordinates should grow from buttom to top (usual on
maps), which is the opposite to screen coordinate system. This field
is not yet taken into account for coordinate transformation methods.

• Saving of environment (layers and colors in Overview, selections, leg-
ends etc.)

• Review of protected modifiers, we set them to protected by default. So
existing modifiers other the protected are probably justified.

• Exception Handling

• Testing phase with concrete tasks to check stability of the system and
to make perhaps refinements in the geometric specification of spatial
constraints.

• Implementation of missing geometric operations, especially gOverlaps
and gCrosses as well as of missing constraints.

1existing in the current implementation under its old name: CollectionWrapper

5.2 Acknowledgements 58

• Map Labelling

And it would improve GOMS to include the following features:

• Printing facility of view’s and collectionTable’s contents

• Optimization of geometric algorithms using sweep line principle.

• LegendItem.Dialog could have further panes to specify values of multi-
ple members to be mapped to different graphical characteristics, such
as label, size and color of stroke, icons to be used as patterns and
points, bar plots and histogram integrated within/beside gObjects.

5.2 Acknowledgements

I thank Prof. Moira C. Norrie and Beat Signer for giving the opportunity to
do a diploma project on a very interesting, they gave me no restrictions in
whatever I was interested to investigate, and spent much time for coaching
me. Special thank goes to Adrian Kobler who voluntarily entered the project
as a cooperator - he made all neccessary modifications to OMS Java’s DDL-
Parser packaged to gisExtensions - and found time for answering questions
and reviewing this report as well. I further acknowledge C. Parent, S. Spac-
capietra, E.Zimányi, P. Donini, C. Plazanet and C. Vangenot from EPFL
who inspired me by their papers [1] and [2]. Last but not least I thank R.
Lamprecht who had the idea of the smooth dragging zoom user interface, to
read more about his work, see [20].

Appendix A

Package gStructure

A.1 gStructure.AbstractView

java.lang.Object

java.awt.Component

java.awt.Container

javax.swing.JComponent

javax.swing.JPanel

public abstract AbstractView extends JPanel

Base class for model visualisation. Is declared abstract to avoid instantiating but actually
no methods are abstract

Field Summary

Type Description

protected static boolean VERTICAL INV : to indicate model coordinates
should grow from buttom to top, which is the opposite
to screen coordinate system

public int x0 : Position in model (offset)

public int y0 : Position in model (offset)

public double zoom : proportion of view pixels per model pixels -
thus 1 means zoomed in

Constructor Summary

Description

AbstractView() +

A.1 gStructure.AbstractView 60

Method Summary

Returns Description

public final double distM(double distV)
view to model transformation for stretch in view-
system
Parameters:
distV : distance in view-system
Returns: distance in model-system

public final double distM(int distV)
view to model transformation for stretch in view-
system
Parameters:
distV : distance in view-system
Returns: distance in model-system

public final double distV(double distM)
model to view transformation for stretch in model-
system
Parameters:
distM : distance in model-system
Returns: distance in view-system

public final double distV(int distM)
model to view transformation for stretch in model-
system
Parameters:
distM : distance in model-system
Returns: distance in view-system

public final Point pointM(Point pv)
view to model transformation for point in view-
coordinates
Parameters:
pv : point in view-coordinates
Returns: point in model-coordinates

public final Point pointV(Point pm)
model to view transformation for point in model-
coordinates
Parameters:
pm : point in model-coordinates
Returns: point in view-coordinates

public final Polygon polygonM(Polygon pv)
view to model transformation for polygon in view-
coordinates.
Parameters:
pv : polygon in view-coordinates
Returns: polygon in model-coordinates

public final Polygon polygonV(Polygon pm)
model to view transformation for polygon in model-
coordinates.
Parameters:
pm : polygon in model-coordinates
Returns: polygon in view-coordinates

A.1 gStructure.AbstractView 61

public final Rectangle rectM(Rectangle rv)
view to model transformation for rectangle in view-
coordinates.
Parameters:
rv : rectangle in view-coordinates
Returns: rectangle in model-coordinates

public final Rectangle rectV(Rectangle rm)
model to view transformation for rectangle in model-
coordinates.
Parameters:
rm : rectangle in model-coordinates
Returns: rectangle in view-coordinates

public final int xm(int xv)
view to model transformation for x-view-coordinate
Parameters:
xv : x-view-coordinate
Returns: x-model-coordinate

public final int xv(int xm)
model to view transformation for x-model-coordinate
Returns: x-view-coordinate

public final int ym(int yv)
view to model transformation for y-view-coordinate
Parameters:
yv : y-view-coordinate
Returns: y-model-coordinate

public final int yv(int ym)
model to view transformation for y-model-coordinate
Returns: y-view-coordinate

A.2 gStructure.Association 62

A.2 gStructure.Association

java.lang.Object

gStructure.TreeInsertable

public Association extends TreeInsertable

Field Summary

Type Description

OMCollection c

CollectionWrapper sColl

CollectionWrapper tColl

Constructor Summary

Description

Association(OMCollection c) +
Does nothing but assigning the c attribute

Method Summary

Returns Description

public String getName()
Returns: name as it is specified in data model

public String toString()
To produce nice string representation of collection for
tree nodes

A.3 gStructure.CollectionTable 63

A.3 gStructure.CollectionTable

java.lang.Object

java.awt.Component

java.awt.Container

javax.swing.JComponent

javax.swing.JTable

public CollectionTable extends JTable

Table to show objects with its members in a certain CollectionWrapper. CollectionTable.
Model is basis for data extraction and inserting.

See Also:

• CollectionWrapper

Field Summary

Type Description

public CollectionWrapper coll : Collection to tabulate

protected ArrayList typeMemberNames : Names of typeMembers

protected ArrayList typeMembers : Attributes and methods (without
parameters) of collections membertype

Constructor Summary

Description

CollectionTable(CollectionWrapper coll) +
Constructs a new CollectionTable.

Method Summary

Returns Description

public void selectAccordingTo(GSet gSet)
If coll has geographical membertype, all objects con-
tained in gSet will be selected in this table
Parameters:
gSet : a set of gObjects

A.4 gStructure.CollectionTable.Model 64

A.4 gStructure.CollectionTable.Model

java.lang.Object

javax.swing.table.AbstractTableModel

public CollectionTable.Model extends AbstractTableModel

Base for CollectionTable. Provides methods to get and set values of table cells as well as
title for headings and number of rows and columns

Constructor Summary

Description

CollectionTable.Model(CollectionTable coll) +

Method Summary

Returns Description

public Class getColumnClass(int col)
Cell-Renderer and -Editor need to know type of values
for certain column.

public int getColumnCount()
Returns: number of columns

public String getColumnName(int col)
Parameters:
col : number of column

Returns: title of column

public int getRowCount()
Returns: number of rows

public Object getValueAt(int row, int col)
Extracts the value for a certain cell by accessing the
col-th member in row-th object of collection
Returns: value object - is Integer, etc. for values of
primitive type

public boolean isCellEditable(int row, int col)
Returns: true if member in col is an attribute, false
for method

public void setValueAt(Object value, int row, int col)
Fills the value-object to the representing member (col)
in the according object (row) in the collection.

A.5 gStructure.CollectionWrapper 65

A.5 gStructure.CollectionWrapper

java.lang.Object

gStructure.TreeInsertable

public CollectionWrapper extends TreeInsertable

Field Summary

Type Description

OMCollection c : Actual container which is wrapped

GSet gIndex : If used in spatial context, this is the accel-
erating index.

Constructor Summary

Description

CollectionWrapper(OMCollection c) +
Does nothing but assigning the c attribute

Method Summary

Returns Description

public void add(Object o)
Insert o into this collection.

public Object get(int pos)
Parameters:
pos : position in collection of desired object
Returns: the desired object

public String getName()
Returns: name as it is specified in data model

public Object getType()
Returns: type which all contained objects must be of

public Iterator iterator()
Returns: Iterator to walk over all contained objects

A.5 gStructure.CollectionWrapper 66

public void listTypeMembers(AbstractList members, Ab-
stractList membernames, boolean include-
Typename, boolean numeric, boolean bool,
boolean string, boolean objectValue)
Fills members and their names into the argument lists.
Parameters:
members : prepared list from caller to receive the
members
membernames : prepared list from caller to re-
ceive the member’s names as String objects (index
coresponds to index in members)
includeTypename : in case of true, there will be a
prefix (’int ’ etc.) before membername
numeric : include numeric members (int, float..)
bool :
string : include string members
objectValue :

public void remove(Object o)
Remove o from this collection and from gIndex - if
esistant.

void setGIndex(GSet gIndex)

public int size()
The number of elements within this collection

public String toString()
To produce nice string representation of collection for
tree nodes

A.6 gStructure.Div 67

A.6 gStructure.Div

java.lang.Object

public Div extends Object

Constructor Summary

Description

Div() +

Method Summary

Returns Description

public static-
Point2D.Double

pointOfIntersection(Double la, Double lb)

Calculates the point where two Line segments inter-
sect.
Returns: null, if they do not intersect or they overlap.
the point of intersection otherwise.

public static boolean wholeNumbered(double x)
Returns: true, if x is of the form ’+++.0’

A.7 gStructure.GArea 68

A.7 gStructure.GArea

java.lang.Object

org.omsjava.OMSBaseObject

org.omsjava.core.OMSInstance

gStructure.GObject

gStructure.VertexShape

public GArea extends VertexShape

Field Summary

Type Description

protected static int DEFAULT N

protected static int[] DEFAULT X : Default values for geometry of new
gAreas

protected static int[] DEFAULT Y

protected Polygon p : wrapped java.awt.Polygon to profit from built-in
algorithms

Constructor Summary

Description

GArea() +
Constructs a new gArea with default geometry Note: init() is called here

GArea(int[] xpoints, int[] ypoints, int npoints) +
Constructs a new gArea with given geometry Note: init() is called here

A.7 gStructure.GArea 69

Method Summary

Returns Description

public double area()
To calculate the area of this GArea
Returns: the area of the wrapped polygon

public boolean gContains(GObject o)
Tests if this GArea contains another GObject o (refer
to report for specification of contains)
Parameters:
o : another GObject to test containing it
Returns: true if this contains o, false otherwise

public int getNedges()
Returns: number of edges (same as nof vertices in case
of gArea)

public int getNpoints()
Returns: number of vertices

A.7 gStructure.GArea 70

public boolean gTouches(GObject o)
Tests if this GArea touches another GObject o (refer
to report for specification of touches)
Parameters:
o : another GObject to test touching constraint with
return true if they touch, false otherwise

public void init()
To initialise transient attributes as well as init
of shared references between this GArea and the
wrapped java.awt.Polygon

public boolean intersects(Rectangle r)
Tests if this GArea intersects a given Rectangle
Parameters:
r : Rectangle to check if this GArea intersects with
Returns: true if this GArea intersects r, false other-
wise

public boolean isSimple()
Returns: true, if gArea is free of selfintersections
(touching is not allowed either) - false otherwise.

public void paint(Graphics2D g2, AbstractView v)
Paints this GArea on any viewing frame that extends
AbstractView.
Parameters:
g2 : the Graphics context given from System to
AbstractView.paintComponent(Graphics g)
v : the AbstractView to paint within

void setNpoints(int npoints)
To set the number of vertices.
Parameters:
npoints : number of vertices this GArea shall have

public String toString()
Human readable text for this GArea

void translateConcrete(int dx, int dy)
Will be invoked from within translate(dx, dy), which
performs general part for index consistency.
Parameters:
dx : translation in x direction
dy : translation in y direction

protected int triangleArea2(int ax, int ay, int bx, int by, int
cx, int cy)
Calculates the signed area of the triangle (multiplied
by 2, because of nice integer arithmetics) This method
is used to calculate polygon area.
Returns: twice the area, positive if CCW from a to b
to c

A.8 gStructure.GHashSet 71

A.8 gStructure.GHashSet

java.lang.Object

gStructure.GSet

public GHashSet extends GSet

Field Summary

Type Description

private HashSet h : wrapped HashSet as container for the inserted
gObjects

Constructor Summary

Description

GHashSet() +
Default constructor, instantiates a new GHashSet without registering and with
no collection either

GHashSet(boolean registered) +
Constructs a registered GHashSet, but without being gIndex of a collection

GHashSet(CollectionWrapper coll) +
Constructs a GHashSet, which is gIndex of a collection, and is registered.

A.8 gStructure.GHashSet 72

Method Summary

Returns Description

public void add(GObject o)
Insert o, update bounds and if registered, register this
GHashSet in o

public void clear()
Removes all, if registered this GHashSet will be un-
registered in all gObjects that were contained.

public boolean contains(GObject o)
Returns: true, if o within this GHashSet - false other-
wise

public boolean isEmpty()
Returns: true, if no gObject within this GHashSet -
false otherwise

public GSet.GIterator iterator()
To walk over all contained gObjects.

public GSet range(Rectangle r, boolean enclosing)
Range Query: returns all the objects contained in r.
Parameters:
r : range, where objects shall be returned.
enclosing : if true, only gObjects count, that are
fully within r, otherwise also those which just overlap
into r count.

public void remove(GObject o)
Remove o, update bounds, if registered, unregister this
GHashSet in o

public int size()
Returns: amount of gObjects contained within this
GHashSet

A.9 gStructure.GLine 73

A.9 gStructure.GLine

java.lang.Object

org.omsjava.OMSBaseObject

org.omsjava.core.OMSInstance

gStructure.GObject

gStructure.VertexShape

public GLine extends VertexShape

Field Summary

Type Description

protected static int DEFAULT N

protected static int[] DEFAULT X : Default values for geometry of new
gAreas

protected static int[] DEFAULT Y

public int npoints : The total number of vertices.

Constructor Summary

Description

GLine() +
Constructs a GLine with default geometry.

GLine(int[] xpoints, int[] ypoints, int npoints) +
Constructs a GLine with given geometry.

Method Summary

Returns Description

public boolean gContains(GObject o)
Tests if this GLine contains another GObject o (refer
to report for specification of contains)
Parameters:
o : another GObject to test containing it
Returns: true if this contains o, false otherwise

public int getNedges()
Returns: number of edges

public int getNpoints()
Returns: number of vertices

A.9 gStructure.GLine 74

public boolean gTouches(GObject o)
Tests if this GObject touches another GObject o (refer
to report for specification of touches)
Parameters:
o : another GObject to test touching constraint with
return true if they touch, false otherwise

public boolean hasEnding(double x, double y)
Returns: true, if this GLine has first or last vertex at
(x, y)

public void init()
To initialise transient attributes

public boolean intersects(Rectangle r)
Returns: true, if any point of this GLine lies within
Rectangle r. (or on an edge / corner of r) - false
otherwise.

public boolean isCycle()
Returns: true, if this GLine has first and last vertex
at same position

public boolean isOpen()
Returns: true, if this GLine is free of self-intersections

public double length()
Returns: length of this GLine - the sum of the seg-
ments lengths

public void paint(Graphics2D g2, AbstractView v)
Paints this GLine on any viewing frame that extends
AbstractView.
Parameters:
g2 : the Graphics context given from System to
AbstractView.paintComponent(Graphics g)
v : the AbstractView to paint within

void setNpoints(int npoints)
To set the number of vertices.
Parameters:
npoints : number of vertices this GArea shall have

public String toString()
Human readable text for this GLine

void translateConcrete(int dx, int dy)
Will be invoked from within translate(dx, dy), which
performs general part for index consistency.
Parameters:
dx : translation in x direction
dy : translation in y direction

A.10 gStructure.GObject 75

A.10 gStructure.GObject

java.lang.Object

org.omsjava.OMSBaseObject

org.omsjava.core.OMSInstance

public abstract GObject extends OMSInstance

Field Summary

Type Description

protected transient-
Rectangle

bounds : Redundant minimum boundary region, for
performance reason

public String caption : For map labbeling

protected transient-
HashSet

registeredSets : Set of registered containers (GSet),
need to be informed of changes to validate their in-
dexstructure (can be dependet from object location
and shape)

protected transient-
boolean

valid : Redundant, for performance reason - indicates
whether constraints are satisfied for this GObject

Constructor Summary

Description

GObject() +
Default constructor, does nothing but overwrite public modifier by package ac-
cess.

Method Summary

Returns Description

final void addInSets(GSet[] sets)
Needs to be invoked after operations that performed
spatial changes on the object - in combination with
removeFromAllRegisteredSets before.

public void checkObjectConstraints()
Invoked (usually after object modification) to check
whether it satisfies object- and collection-constraints.

public final GObject copy()
Performs copy-operation including some neccessary
initialising for registered layers and wrapped objects.
Returns: a GObject of the same dynamic type like the
original

A.10 gStructure.GObject 76

abstract void copyConcrete(GObject copy)
Needs to be overwritten due to specific operations for
the concrete GObjectSubclass.
Parameters:
copy : by copy() newly generated copy of this GOb-
ject

public void delete()
Removes this GObject from all registered containers
as well as from wrapped collections

public abstract boolean gContains(GObject o)
Tests if this GObject contains another GObject o (re-
fer to report for specification of contains)
Parameters:
o : another GObject to test containing it
Returns: true if this contains o, false otherwise

public abstract boolean gDisjoint(GObject o)
Tests if this GObject is geographically disjoint to an-
other GObject o (refer to report for specification of
disjoint)
Parameters:
o : another GObject to test geographical disjoint
with
Returns: true if this GObject has no common points
with o, false otherwise

public abstract boolean gEquals(GObject o)
Tests if this GObject is geographically equal to an-
other GObject o
Parameters:
o : another GObject to test geo-equality
Returns: true if geographically equal to o, false oth-
erwise

public final String getCaption()
getters / setters for coresponding attributes

public abstract Point getLocation()
To get an anchor position for this GObject
Returns: A Point representing the anchor position of
this GObject

public Object getMemberValue(Object member)
To gets the value of a member (attribute or method) of
a concrete subclass type, which this must be instance
of.
Parameters:
member : Object representing attribute or method

final GSet[] getRegisteredSetsArray()
Returns all the registered sets as an array, invoked by
removeFromAllRegisteredSets and returned as backup
array
Returns: an array containing all the GSet that are
registered

public abstract boolean gTouches(GObject o)
Tests if this GObject touches another GObject o (refer
to report for specification of touches)
Parameters:
o : another GObject to test touching constraint with
return true if they touch, false otherwise

A.10 gStructure.GObject 77

public void init()
Every GObjectSubclass has its init() method, because
init of transient fields cannot be placed into construc-
tors.

public abstract boolean intersects(Rectangle r)
Tests if this GObject intersects a given Rectangle
Parameters:
r : Rectangle to check if this GObject intersects with
Returns: true if this GObject intersects r, false other-
wise

public abstract boolean isInside(Rectangle r)
Tests if this GObject lies within a given Rectangle
Parameters:
r : Rectangle to check if this GObject lies within
Returns: true if this GObject lies within r, false oth-
erwise

public boolean isValid()
To ask if this GObject established the constraints
Returns: true if valid, false otherwise

public final Rectangle mbr()
Returns the minimum bounding region for this object.
Returns: a reference to the original bounds attribute
of this GObject

public abstract void paint(Graphics2D g2, AbstractView v)
Paints this GObject on any viewing frame that ex-
tends AbstractView.
Parameters:
g2 : the Graphics context given from System to
AbstractView.paintComponent(Graphics g)
v : the AbstractView to paint within

final void registerSet(GSet newSet)
Registers a container (GSet) which contains this
GObject note: should only be called from within
GSet.add(GObject), to not invalidate consistency of
the bidirectional reference between [GSet, GObject]!
Parameters:
newSet : the GSet that contains this GObject

A.10 gStructure.GObject 78

final GSet[] removeFromAllRegisteredSets()
Needs to be invoked before operations that perform
spatial changes on the object - in combination with
addInSets(returned backup array) afterwards.
Returns: a backup array containing all the GSet that
were registered before

public final void setCaption(String caption)

public void setValid(boolean valid)
Is invoked by constraint checking algorithms
Parameters:
valid : true if this GObject establishes the con-
straints false otherwise

public final void translate(int dx, int dy)
There will ”translateConcrete(dx, dy) after ”bak = re-
moveFromAllRegisteredSets()” and ”addInSets(bak)”
finally.

abstract void translateConcrete(int dx, int dy)
Needs to be overwritten due to specific operations for
the concrete GObjectSubclass.

final void unregisterSet(GSet oldSet)
Unregisters a container (GSet) which does not con-
tain this GObject (anymore) note: should only be
called from within GSet.remove(GObject), to not in-
validate consistency of the bidirectional reference be-
tween [GSet, GObject]!
Parameters:
oldSet : the GSet to unregister

A.11 gStructure.GOrientedLine 79

A.11 gStructure.GOrientedLine

java.lang.Object

org.omsjava.OMSBaseObject

org.omsjava.core.OMSInstance

gStructure.GObject

gStructure.VertexShape

gStructure.GLine

public GOrientedLine extends GLine

Constructor Summary

Description

GOrientedLine() +
Constructs a GLine with default geometry.

GOrientedLine(int[] xpoints, int[] ypoints, int npoints) +
Constructs a GOrientedLine with given geometry.

Method Summary

Returns Description

public boolean endsAt(double x, double y)
Returns: true, if this GLine has last vertex at (x, y)

public void paint(Graphics2D g2, AbstractView v)
Performs painting of GLine followed by drawing an
arrow dot at end of the GOrientedLine

public boolean startsAt(double x, double y)
Returns: true, if this GLine has first vertex at (x, y)

public String toString()
Human readable text for this GOrientedLine

A.12 gStructure.GPoint 80

A.12 gStructure.GPoint

java.lang.Object

org.omsjava.OMSBaseObject

org.omsjava.core.OMSInstance

gStructure.GObject

public GPoint extends GObject

Field Summary

Type Description

private int x : Coordinates of this GPoint

private int y : Coordinates of this GPoint

Constructor Summary

Description

GPoint() +
Constructs a new GPoint at (0, 0).

GPoint(int x, int y) +
Constructs a new GPoint at (x, y).

Method Summary

Returns Description

void copyConcrete(GObject copy)
Concrete code for copy operation invoked on GPoint.
Parameters:
copy : by copy() newly generated copy of this GOb-
ject

public boolean gContains(GObject o)
Tests if this GPoint contains another GObject o (refer
to report for specification of contains)
Parameters:
o : another GObject to test containing it
Returns: true if this contains o, false otherwise

A.12 gStructure.GPoint 81

public boolean gDisjoint(GObject o)
Tests if this GPoint is geographically disjoint to an-
other GObject o (refer to report for specification of
disjoint)
Parameters:
o : another GObject to test geographical disjoint
with
Returns: true if this GObject has no common points
with o, false otherwise

public boolean gEquals(GObject o)
Tests if this GPoint is geographically equal to another
GObject o
Parameters:
o : another GObject to test geo-equality
Returns: true if geographically equal to o, false oth-
erwise

public final Point getLocation()
Returns: position (x, y) of this GPoint as a
java.awt.point object

public final int getX()
Returns: x coordinate

public final int getY()
Returns: x coordinate

public boolean gTouches(GObject o)
Tests if this GPoint touches another GObject o (refer
to report for specification of touches)
Parameters:
o : another GObject to test touching constraint with
return true if they touch, false otherwise

public void init()
To initialise transient attributes

public boolean intersects(Rectangle r)
Returns: true, if isInside(r) - false otherwise.

public boolean isInside(Rectangle r)
Returns: true, if extension of r contains this GPoint.
Extension of r is defined as follows: same position
as r, but rE.width = r.width + 1 and analogous for
height. Reason: lower and right edge of rectangle shall
be treated the same way as upper and left edge. See
report for detailed information

public void paint(Graphics2D g2, AbstractView v)
Paints this GPoint on any viewing frame that extends
AbstractView.
Parameters:
g2 : the Graphics context given from System to
AbstractView.paintComponent(Graphics g)
v : the AbstractView to paint within

A.12 gStructure.GPoint 82

public final void setLocation(Point p)
To set the position from outside of package, index
consistency is bewared and bounds updated automat-
ically.

public final void setX(Integer x)
To set the x coordinate from outside of package, index
consistency is bewared and bounds updated automat-
ically.

public final void setY(Integer y)
To set the y coordinate from outside of package, index
consistency is bewared and bounds updated automat-
ically.

public String toString()
Human readable text for this GArea

void translateConcrete(int dx, int dy)
Will be invoked from within translate(dx, dy), which
performs general part for index consistency.

A.13 gStructure.GSet 83

A.13 gStructure.GSet

java.lang.Object

public abstract GSet extends Object

Field Summary

Type Description

protected Rectangle bounds : Redundant minimum boundary region, for
performance reason.

protected CollectionWrap-
per

collection : Collection which is indexed by this GSet,
might be null

protected HashSet layerConstraints : Set of all specified geographical
layer constraints

protected HashSet objectConstraints : Set of all specified geographical
object constraints

protected boolean registered : To indicate whether contained objects
register this GSet as a container.

Constructor Summary

Description

GSet() +

Method Summary

Returns Description

public abstract void add(GObject o)
To insert a gObject into this GSet.

public void addAll(GSet gSet)
To insert the content of another GSet at once.

public abstract void clear()
To remove all gObjects from this GSet.

public abstract boolean contains(GObject o)
Returns: true, if o is in this GSet, false otherwise.

A.13 gStructure.GSet 84

public CollectionWrapper getCollection()
To get the collection this GSet is index of
Returns: Indexed Collection - if existing. null other-
wise

public Set getLayerConstraints()
To get the layer constraints from outside of package
Returns: a clone, to be save against client corruption

public String getName()
If this GSet is just index of a wrapped collection, the
name can be extracted here.

public Set getObjectConstraints()
To get the object constraints from outside of package
Returns: a clone, to be save against client corruption

public Object getType()
To get the type of the contained GObjects
Returns: Membertype of indexed Collection - if exist-
ing. null otherwise

public abstract boolean isEmpty()
Returns: true, if no gObjects contained at all.

public abstract-
GSet.GIterator

iterator()

To walk over all contained gObjects.

public Rectangle mbr()
Returns: a Rectangle that is the minimum bounding
region of of the content

public abstract GSet range(Rectangle r, boolean enclosing)
Range Query: returns all the objects contained in r.
Parameters:
r : range, where objects shall be returned.
enclosing : if true, only gObjects count, that are
fully within r, otherwise also those which just overlap
into r count.

public abstract void remove(GObject o)
To remove a gObject into this GSet.

public void removeAll(GSet gSet)
Removes all the gObjects from gSet, which are con-
tained in this GSet

public abstract int size()
Returns: number of gObjects contained in this GSet

public GObject[] toArray()
Provides an array representation of this GSet.
Returns: new GObject[size()] array, containing all
gObjects in unspecified order

public void translate(int dx, int dy)
Translate all contained objects.
Parameters:
dx : translation in x direction
dy : translation in y direction

protected void updateBounds()
To revalidate the bounds attribute.

A.14 gStructure.GSet.GIterator 85

A.14 gStructure.GSet.GIterator

java.lang.Object

public GSet.GIterator extends Object

Wrapper of java.util.Iterator to decorate it with inherent cast to GObject - which is the
only allowed type in GSet.

Field Summary

Type Description

private Iterator i

Constructor Summary

Description

GSet.GIterator(GSet this\$0, Iterator i) +
Can’t be invoked from outside of GSet.

Method Summary

Returns Description

public boolean hasNext()
Returns true if the iteration has more elements.

public GObject next()
Returns the next element in the iteration.

A.15 gStructure.InternalNode 86

A.15 gStructure.InternalNode

java.lang.Object

gStructure.Node

final InternalNode extends Node

Field Summary

Type Description

protected Node ll : References to the four subtrees, u:upper l:lower /
l:left r:right

protected Node lr : References to the four subtrees, u:upper l:lower /
l:left r:right

protected Point split : Coordinates of the point, where the four sub-
trees coincide

protected Node ul : References to the four subtrees, u:upper l:lower /
l:left r:right

protected Node ur : References to the four subtrees, u:upper l:lower
/ l:left r:right

Constructor Summary

Description

InternalNode(Point split) +
To create a new InternalNode with subtrees meeting at given location

Method Summary

Returns Description

protected Node add(GObject o)
Inserts a gObject to the node’s subtrees

protected boolean contains(GObject o)
Returns: True, if the node’s subtrees contains the
gObject

protected void paint(Graphics2D g2, AbstractView v)
For debugging purpose, prints all the gObjects con-
tained in subtrees at a certain view

protected void print(String levelTabs)
For debugging purpose, prints the subtrees at a certain
tabulator level (according to depth of upper part of
tree

protected void rangeFill(Rectangle r, boolean enclosing, GSet
range)
Fills all gObjects from node’s subtrees which are inside
r to given range.

protected void remove(GObject o)
Removes a gObject from the node’s subtrees

A.16 gStructure.Leaf 87

A.16 gStructure.Leaf

java.lang.Object

gStructure.Node

final Leaf extends Node

Field Summary

Type Description

protected HashSet content : Anchor to contents mangager

protected static double CRITICAL PART : crititcal part of contents in a
new child leaf just after having split if exceeded, this
child will be set to unsplittable and thus can not pro-
duce any children itself.

protected static int MAX SIZE : Maximum gObjects that can be con-
tained within leaves.

protected boolean splittable : To specify whether this leaf could split if
MAX SIZE is exceeded

Constructor Summary

Description

Leaf(boolean splittable) +
Instantiation of a new leaf

Method Summary

Returns Description

protected Node add(GObject o)
Inserts a gObject to this leaf.

protected boolean contains(GObject o)
Returns: True, if this leaf contains the gObject

protected void paint(Graphics2D g2, AbstractView v)
For debugging purpose, prints all the gObjects con-
tained in this leaf at a certain view

protected void print(String levelTabs)
For debugging purpose, prints the leaf contents at a
certain tabulator level (according to depth of upper
part of tree

protected void rangeFill(Rectangle r, boolean enclosing, GSet
range)
Fills all gObjects from leaf which are inside r to given
range.

protected void remove(GObject o)
Removes a gObject from this leaf

A.17 gStructure.Model 88

A.17 gStructure.Model

java.lang.Object

java.util.Observable

public Model extends Observable

Field Summary

Type Description

public GAssociationCon-
straint[]

assocConstraints : All the geographical association
constraints contained in the data model Note: other
geographical constraints are attached to layers

public Association[] associations : All the associations contained in the
data model

public CollectionWrapper[] collections : All the collections contained in the data
model

public GSet[] layers : All collections in the model with geographic
type

protected String schemaName : Name of the data model schema
within workspace

protected OMSWorkspace workspace : Anchor to persistent OMS Java

Constructor Summary

Description

Model() +

Method Summary

Returns Description

public void checkConstraints()
Performs checking of all gObjects to check fullfilling
of layer- and association constraints.

public void checkConstraints(Rectangle areaToCheck)
Performs checking of gObjects in areaToCheck to
check fullfilling of layer- and association constraints.

public void clear()
To flush all references

public void commit()
Performs storing to persistence system if all gObjects
are valid (from dmp-file chosen in file selector)

A.17 gStructure.Model 89

public void create()
To initialise the model

public static Object createObject(Object type)
To generate a new object

protected CollectionWrap-
per

getCollection(String alias)

To found a collection in the collections array by given
name

public GSet getLayer(String alias)
To found a layer in the layers array by given name

public Point getMiddle()
Returns: The middle of the minimum bounding region
mbr()

protected TreeInsertable getTreeInsertable(String alias)
To found a collection or association by given name in
their arrays

protected void init()
Init of data model structure due to persistence sys-
tem: Generation of arrays layers, collections and as-
sociations

protected void initConstraints()
Get the specified geographical constraints from
workspace

public Rectangle mbr()

public void notifyObservers()
Does inform the observers (views) about changes in
the model.

public Iterator performQuery(String queryString)
Asks the workspace for results of given queryString.

public GSet range(Rectangle r, boolean enclosing)
Returns the objects contained in r, looking at all layers

public void rollback()
Performs reloading from persistence system (from
dmp-file chosen in file selector)

A.18 gStructure.Node 90

A.18 gStructure.Node

java.lang.Object

abstract Node extends Object

Constructor Summary

Description

Node() +

Method Summary

Returns Description

protected abstract Node add(GObject o)
Inserts a gObject to the node’s subtree

protected abstract-
boolean

contains(GObject o)

Returns: True, if the node’s subtree contains the gOb-
ject

protected abstract void paint(Graphics2D g2, AbstractView v)
For debugging purpose, prints all the gObjects con-
tained in subtree at a certain view

protected abstract void print(String levelTabs)
For debugging purpose, prints the subtree at a certain
tabulator level (according to depth of upper part of
tree

protected abstract void rangeFill(Rectangle r, boolean enclosed, GSet
range)
Fills all gObjects from node’s subtree which are inside
r to given range.
Parameters:
enclosed : true, if objects must be inside r com-
pletely or just overlapping if false

protected abstract void remove(GObject o)
Removes a gObject from the node’s subtree

A.19 gStructure.OpenQuadTree 91

A.19 gStructure.OpenQuadTree

java.lang.Object

gStructure.GSet

public OpenQuadTree extends GSet
implements Cloneable

Field Summary

Type Description

private GHashSet iteratorCache : Redundant linear structure with ref-
erences of all contained gObjects.

private Node root : The entrance of the datastructure

private int size : Redundant field for performance reason

Constructor Summary

Description

OpenQuadTree() +
Default constructor, instantiates a new OpenQuadTree without registering and
without being gIndex of a collection

OpenQuadTree(boolean registered) +
Constructs a registered OpenQuadTree, but without being gIndex of a collection

OpenQuadTree(CollectionWrapper coll) +
Constructs a OpenQuadTree, which is gIndex of a collection, and registered as
well.

Method Summary

Returns Description

public void add(GObject o)
Insert o, update bounds and if registered, register this
OpenQuadTree in o

public void clear()
Removes all, if registered this OpenQuadTree will be
unregistered in all gObjects that were contained.

public boolean contains(GObject o)
Returns: true, if o within this OpenQuadTree - false
otherwise

private void init(CollectionWrapper coll, boolean regis-
tered)
Helper method for all the constructors

A.19 gStructure.OpenQuadTree 92

public boolean isEmpty()
Returns: true, if no gObject within this Open-
QuadTree false otherwise

public GSet.GIterator iterator()
To walk over all contained gObjects.

public void paint(Graphics2D g2, AbstractView v)
Paint the tree structure grid to a view - For Debugging

public void print()
Prints the tree data in tabulator-structured form - For
Debugging

public GSet range(Rectangle r, boolean enclosing)
Range Query: returns all the objects contained in r.
Parameters:
r : range, where objects shall be returned.
enclosing : if true, only gObjects count, that are
fully within r, otherwise also those which just overlap
into r count.
Returns: present implementation returns GHashSet

public void remove(GObject o)
Remove o, update bounds, if registered, unregister this
OpenQuadTree in o

public void showInFrame()
Shows a frame, where the tree is painted within - For
Debugging

public int size()
Returns: amount of gObjects contained within this
OpenQuadTree

A.20 gStructure.TreeInsertable 93

A.20 gStructure.TreeInsertable

java.lang.Object

public TreeInsertable extends Object

Field Summary

Type Description

boolean covered : To specify this to be fully covered by sub-
container.

public Set parents : To establish the sub/super structure with
the other treeInsertables in the Model

Constructor Summary

Description

TreeInsertable() +

Method Summary

Returns Description

public void addSuperColl(TreeInsertable c)
To specify parents of this container.

public boolean isCovered()
To ask this GSet of being fully covered by sub-
container.
Returns: true if covered, false otherwise

public void setCovered(boolean covered)
Parameters:
covered : true to specify being covered, false other-
wise

A.21 gStructure.Vertex 94

A.21 gStructure.Vertex

java.lang.Object

public Vertex extends Object

Field Summary

Type Description

private VertexShape object : The VertexShape, which this Verex is vertex
of

private int pos : The index in the ranking of vertices in the ref-
erenced VertexShape

Constructor Summary

Description

Vertex(VertexShape object, int vertexNo) +
Constructs a new vertex-object with given VertexShape and no.

Method Summary

Returns Description

public void addNeighbour(int x, int y, boolean before)
Inserts a new Vertex next to this Vertex at the speci-
fied location.
Parameters:
x : the x coordinate of the new Vertex
y : the y coordinate of the new Vertex
before : true if new Vertex should be inserted before
this one in the VertexShape’s list of points, false if it
should be inserted afterwards

public boolean equals(Vertex v)
Tests if this vertex is equal to another one (not just
reference test!)
Parameters:
v : The other Verex to test for equality
Returns: true if this Vertex has the same object and
vertex no. as v, false otherwise

A.21 gStructure.Vertex 95

public Point getLocation()
Returns coordinates of this Vertex
Returns: point representing coordinates of this Vertex

public int getPosition()
Returns: the position in its VertexShape this Vertex
belongs to

public VertexShape getShape()
Returns: the VertexShape this Vertex belongs to

public int getX()
Returns x coordinate of this Vertex
Returns: x coordinate

public int getY()
Returns y coordinate of this Vertex
Returns: y coordinate

public boolean isAtNeighbour()
Checks if this Vertex has the same coordinates as one
of its neighbours.
Returns: true if this Vertex has the same coordinates
than one of its two neighbours, false otherwise

public void moveTo(int x, int y)
Moves this Vertex to the specified location.
Parameters:
x : the new x coordinate
y : the new y coordinate

public void moveTo(Point p)
Moves this Vertex to the specified location.
Parameters:
p : point specifiying the new coordinates

public void remove()
Removes this Vertex from the referenced Ver-
texShape’s points.

A.22 gStructure.VertexShape 96

A.22 gStructure.VertexShape

java.lang.Object

org.omsjava.OMSBaseObject

org.omsjava.core.OMSInstance

gStructure.GObject

public abstract VertexShape extends GObject

Field Summary

Type Description

int[] xp : The arrays of coordinates.

int[] yp : The arrays of coordinates.

Constructor Summary

Description

VertexShape() +

Method Summary

Returns Description

void copyConcrete(GObject copy)
Concrete code for copy operation invoked on Ver-
texShape.
Parameters:
copy : by copy() newly generated copy of this GOb-
ject

public boolean gDisjoint(GObject o)
Tests if this GObject is geographically disjoint to an-
other GObject o (refer to report for specification of
disjoint)
Parameters:
o : another GObject to test geographical disjoint
with
Returns: true if this GObject has no common points
with o, false otherwise

public boolean gEquals(GObject o)
Tests if this GObject is geographically equal to an-
other GObject o
Parameters:
o : another GObject to test geo-equality

Returns: true if geographically equal to o, false oth-
erwise

A.22 gStructure.VertexShape 97

public final Point getLocation()
Neccessary for operations that need anchors on objects

public abstract int getNedges()
Returns: number of edges

public abstract int getNpoints()
Returns: number of vertices

public final OMCollection getPoints()
Interface to OMS specific code.

public Vertex getVertex(int pos)
Returns: a new Vertex object, which is the only public
interface to perform modifications on VertexShapes.

public boolean hasVertex(int x, int y)
Returns: true, if this VertexShape has a vertex at (x,
y), false otherwise

public void init()
Pseudo constructor, in paricular for copy() and dese-
rialising

public boolean isInside(Rectangle r)
Returns: true, if this VertexShape is fully within r
(Touching does not violate ’being inside’)

boolean isSelfIntersecting()
Returns: true, if any non-neighboured edges intersect
(touching means intersecting as well here!)

abstract void setNpoints(int npoints)
To specify how many entries in the coordinates arrays
are vertices

public final void setPoints(int[] xpoints, int[] ypoints)
To assign coordinate arrays attribute a new reference.

public final void setPoints(OMCollection points)
Interface to OMS specific code.

public String toString()
Returns (abstract) VertexShape part of a human read-
able textual representation for object of a concrete
subclass

void updateBounds()
To revalidate redundant bounds attribute after modi-
fications

Appendix B

Package
gStructure.constraint

B.1 ..constraint.GAContainingConstraint

java.lang.Object

gStructure.constraint.GAssociationConstraint

public GAContainingConstraint extends GAssociationConstraint

Constructor Summary

Description

GAContainingConstraint(GSet src, int smin, int smax, GSet tar, int
tmin, int tmax) +

Method Summary

Returns Description

public boolean checkConcrete(GObject source, GObject tar-
get)
Returns: True, if source contains the target gObject

public String toString()

B.2 ..constraint.GAssociationConstraint 99

B.2 ..constraint.GAssociationConstraint

java.lang.Object

public abstract GAssociationConstraint extends Object

Field Summary

Type Description

public final GSet srcLayer

public final int srcMax

public final int srcMin : Refer to report for explanation of cardinal-
ities

public final GSet tarLayer

public final int tarMax

public final int tarMin

Constructor Summary

Description

GAssociationConstraint(GSet src, int smi, int sma, GSet tar, int tmi,
int tma) +

Method Summary

Returns Description

public void check(Rectangle areaToCheck)
Checks all the gObjects within areaToCheck to be
valid in terms of the concrete associationConstraint,
those that do not will be set to invalid.

public abstract boolean checkConcrete(GObject source, GObject tar-
get)
Returns: True, if source and target gObjects satisfy
the concrete association-constraint condition

B.3 ..constraint.GATouchingConstraint 100

B.3 ..constraint.GATouchingConstraint

java.lang.Object

gStructure.constraint.GAssociationConstraint

public GATouchingConstraint extends GAssociationConstraint

Constructor Summary

Description

GATouchingConstraint(GSet src, int smin, int smax, GSet tar, int
tmin, int tmax) +

Method Summary

Returns Description

public boolean checkConcrete(GObject source, GObject tar-
get)
Returns: True, if source and target gObject are touch-
ing

public String toString()

B.4 ..constraint.GLayerConstraint 101

B.4 ..constraint.GLayerConstraint

java.lang.Object

public abstract GLayerConstraint extends Object

Field Summary

Type Description

public final GSet layer : The layer whose objects must fullfill the con-
crete layer-constraint

Constructor Summary

Description

GLayerConstraint(GSet layer) +

Method Summary

Returns Description

public void check(Rectangle areaToCheck)
Checks all the gObjects within areaToCheck to be
valid in terms of the concrete layer-constraint, those
that do not will be set to invalid.

public abstract boolean checkConcrete(GObject source, GObject tar-
get)
Returns: True, if source and target gObjects satisfy
the concrete layer-constraint condition

B.5 ..constraint.GLDisjointConstraint 102

B.5 ..constraint.GLDisjointConstraint

java.lang.Object

gStructure.constraint.GLayerConstraint

public GLDisjointConstraint extends GLayerConstraint

Constructor Summary

Description

GLDisjointConstraint(GSet layer) +

Method Summary

Returns Description

public boolean checkConcrete(GObject source, GObject tar-
get)
Returns: True, if source and target gObjects are geo-
graphically disjoint

public String toString()

B.6 ..constraint.GLTouchingConstraint

java.lang.Object

gStructure.constraint.GLayerConstraint

public GLTouchingConstraint extends GLayerConstraint

Constructor Summary

Description

GLTouchingConstraint(GSet layer) +

Method Summary

Returns Description

public boolean checkConcrete(GObject source, GObject tar-
get)
Returns: True, if source and target gObjects are geo-
graphically disjoint or touching

public String toString()

B.7 ..constraint.GObjectConstraint 103

B.7 ..constraint.GObjectConstraint

java.lang.Object

public abstract GObjectConstraint extends Object

Constructor Summary

Description

GObjectConstraint() +

Method Summary

Returns Description

public abstract boolean check(GObject o)
Returns: True, if the gObject o does satisfy the con-
crete object-constraint

B.8 ..constraint.GOCycleLineConstraint 104

B.8 ..constraint.GOCycleLineConstraint

java.lang.Object

gStructure.constraint.GObjectConstraint

public GOCycleLineConstraint extends GObjectConstraint

Constructor Summary

Description

GOCycleLineConstraint() +

Method Summary

Returns Description

public boolean check(GObject o)
Returns: True, if the gObject o is a line and a cycle

B.9 ..constraint.GOOpenLineConstraint

java.lang.Object

gStructure.constraint.GObjectConstraint

public GOOpenLineConstraint extends GObjectConstraint

Constructor Summary

Description

GOOpenLineConstraint() +

Method Summary

Returns Description

public boolean check(GObject o)
Returns: True, if the gObject is a line and does not
have self-intersections

Appendix C

Package god

C.1 god.Const

java.lang.Object

public Const extends Object

A container for global constants

Field Summary

Type Description

public static int CHANGE ZOOM

public static int IDLE : the different states for dragmode in view’s
control

public static int MAGNETIC RAD : radius of magnetic influence
of other vertices [pixel]:

public static double MAX ZOOM

public static int MIN GRID DIST : minimum distance between
gridlines [pixel]:

public static double MIN ZOOM

public static int MOVE CONTENT

public static int MOVE SELECTION

public static int MOVE VERTEX

C.1 god.Const 106

public static int NAV WIDTH : width of navigator pane [pixel]:

public static int NEW SELECTION

public static Color SEL COLOR : size for selection (how large is high-
lighting) :

public static int TOL : tolerance for selecting elements with mouse
[pixel]:

public static boolean VERTICAL INV : vertical inversion because of
screen coordinate system (y starting at top):

public static Color VIS BUTTON COLOR : color of visibilty LED in
LegendItem

public static double ZOOM CHANGE : standard zoom in: zoom =
zoom * the following const:

Constructor Summary

Description

Const() +

C.2 god.Control 107

C.2 god.Control

java.lang.Object

java.awt.event.MouseAdapter

public Control extends MouseAdapter
implements ActionListener,MouseMotionListener,KeyListener

This is the handler class for a view. All fields and local variables ending by M or V are
for emphasising where they are related to: Model or View

Field Summary

Type Description

protected Point anchorM : Model position of marker nearest to mouse

protected int currXv : position at time of current ’mouseDragged’
execution

protected int currYv : position at time of current ’mouseDragged’
execution

protected int dragMode : the mode of drag engine, see report for
description of the drag engine

protected Point mouseAnchorM : Model position of mouse

protected boolean movedAcrossViews : Was the selection dragged to
another view?

protected int oldXv : position at time of previous ’mouseDragged’
execution

protected int oldYv : position at time of previous ’mouseDragged’
execution

protected Selec-
tion.MarkerSet

selMarkerSet : All markers of the selection

protected Selec-
tion.SinglePositionMarkerSet

singlePosMarkerSet : Markers involved in vertex
moving

protected int startXv : position at beginning of drag action

protected int startYv : position at beginning of drag action

protected View targetView : If movedAcrossViews, which view was
the target?

protected View v : view which has this control to handle events

Constructor Summary

Description

Control(View v) +
Construction of a control for a given view

C.2 god.Control 108

Method Summary

Returns Description

public void actionPerformed(ActionEvent e)
Invoked when an action occurs, to handle popup menu
(cut, copy, paste)

protected Point getMagnet(Point mousePosM, MarkerSet
tabou)
Searches for a marker in specified
Const.MAGNETIC RAD(ius) from mousePos that is
a valid magnet.

protected GOD gOD()
To avoid lot of link-chains (v.vf.gOD) in rest of class’
code

private GSet insertionLayer()
Returns: The layer which is visible and highest in the
legend order

protected boolean isLeftButton(MouseEvent e)

protected boolean isMiddleButton(MouseEvent e)

protected boolean isRightButton(MouseEvent e)

public void keyPressed(KeyEvent e)
Invoked when a key has been pressed.

public void keyReleased(KeyEvent e)
Invoked when a key has been released.

public void keyTyped(KeyEvent e)
Invoked when a key has been typed, to handle short-
cuts, at the moment: ’+’ and ’-’ to zoom

protected void maybeShowPopup(MouseEvent e)
Does show the popup menu on screen, if e is from right
button

public void mouseClicked(MouseEvent e)
Invoked when the mouse has been clicked on the view.

public void mouseDragged(MouseEvent e)
Invoked when a mouse button is pressed on view and
then dragged.

public void mouseEntered(MouseEvent e)
Invoked when the mouse enters the view.

public void mouseExited(MouseEvent e)
Invoked when the mouse exits the view.

public void mouseMoved(MouseEvent e)
Invoked when the mouse button has been moved on a
component (with no buttons no down).

C.2 god.Control 109

public void mousePressed(MouseEvent e)
Invoked when a mouse button has been pressed on
view.

public void mouseReleased(MouseEvent e)
Invoked when a mouse button has been released on
view.

protected Rectangle sensRectM(int xv, int yv)
calc sensitive area according to Const.TOL (mouse
tolerance)

protected GSet visibleRange(Rectangle rm, boolean enclosing)
Returns gSet of all gObjects contained in rm and in a
visible layer.
Parameters:
rm :
enclosing : True, if gObjects must be inside com-
pletely, false if overlapping is allowed as well

C.3 god.GOD 110

C.3 god.GOD

java.lang.Object

java.awt.Component

java.awt.Container

java.awt.Panel

java.applet.Applet

javax.swing.JApplet

public GOD extends JApplet
implements ClipboardOwner,ActionListener,InternalFrameListener,ComponentListener

Main class, startable as applet or application

Field Summary

Type Description

protected int actFrameNo : The currently activated viewFrame’s
number in viewFrames

protected Clipboard clipboard : Container of cutten or copied selection

protected JDesktopPane desktop

protected ArrayList mapImages : All open bitmap backgrounds

protected JMenuBar menuBar

protected JMenu menuDatabase

protected JMenu menuDebug

protected JMenu menuFile

protected JMenu menuMap

protected JMenu menuSelection

protected JMenu menuViewFrame

protected JMenu menuWindow

protected JMenuItem miCloseMap

protected JMenuItem miCommit

protected JMenuItem miConnect

protected JMenuItem miCopySel

protected JMenuItem miDeleteSel

protected JMenuItem miInsertSel

protected JMenuItem miInsertViewFrame

protected JMenuItem miLoadDump

protected JMenuItem miNew

protected JMenuItem miOpenMap

protected JMenuItem miQuit

protected JMenuItem miRenameViewFrame

protected JMenuItem miRollback

C.3 god.GOD 111

protected JMenuItem miSaveDump

protected JMenuItem miTreePrint

protected JMenuItem miTreeStructure

protected Model model : The center of all datastructure

protected Navigator navigator : Custum swing component, containing ta-
bles, the jTree and the overView

protected ArrayList selections : All open selections

protected JSplitPane splitPane : standard swing components

protected JLabel statusBar

protected ArrayList viewFrames : all open viewFrames

Constructor Summary

Description

GOD() +

Method Summary

Returns Description

public void actionPerformed(ActionEvent e)
Called to handle menu items

protected void closeAll()
To flush all viewFrames, mapImages, selections and
the model

public void componentHidden(ComponentEvent e)
Invoked when the component has been made invisible.

public void componentMoved(ComponentEvent e)
Invoked when the component’s position changes.

public void componentResized(ComponentEvent e)
Invoked when the component’s size changes.

public void componentShown(ComponentEvent e)
Invoked when the component has been made visible.

protected ViewFrame getActiveFrame()
Returns: the viewFrame associated with actFrameNo

protected View getViewAt(Point desktopPos)
Returns: the view, which is located at certain desktop-
relative coordinate. Specially to move objects across
views

public void init()
init of components, layouting and loading default files,
defined in Const

C.3 god.GOD 112

public void internalFrameActivated(InternalFrameEvent
e)
Invoked when an internal frame is activated.

public void internalFrameClosed(InternalFrameEvent e)
Invoked when an internal frame has been closed.

public void internalFrameClosing(InternalFrameEvent e)
Invoked when an internal frame is in the process of
being closed.

public void internalFrameDeactivated(InternalFrameEvent
e)
Invoked when an internal frame is de-activated.

public void internalFrameDeiconified(InternalFrameEvent
e)
Invoked when an internal frame is de-iconified.

public void internalFrameIconified(InternalFrameEvent e)
Invoked when an internal frame is iconified.

public void internalFrameOpened(InternalFrameEvent e)
Invoked when a internal frame has been opened.

public void lostOwnership(Clipboard clipboard, Transfer-
able contents)
Notifies this object that it is no longer the owner of
the contents of the clipboard.

public static void main(String[] args)
Although it is an applet it has this main method where
a local frame is allocated and the applet trucked inside,
so GomsView can be runned as an application as well

protected Point posOnComponent(Component destComp,
Component sourceComp, Point sourceLoc)
For inter-component coordinate transformation.

protected void setActiveFrame(ViewFrame vf)
sets the a viewFrame to the active one, actassociated
with actFrameNo

C.4 god.GOD.RenameDialog 113

C.4 god.GOD.RenameDialog

java.lang.Object

java.awt.Component

java.awt.Container

java.awt.Window

java.awt.Dialog

javax.swing.JDialog

public GOD.RenameDialog extends JDialog
implements ActionListener

Simple dialog to rename the activated viewFrame

Field Summary

Type Description

protected JButton btnCancel

protected JButton btnOK

protected StringBuffer newName : reference to object of client class, where
it wants the result must be StringBuffer, because
String is immutable!

protected JTextField txtNewName

Constructor Summary

Description

GOD.RenameDialog(GOD god, StringBuffer newName) +

Method Summary

Returns Description

public void actionPerformed(ActionEvent e)
Sets the newName to text, written by the user

C.5 god.GOD.SimpleFileFilter 114

C.5 god.GOD.SimpleFileFilter

java.lang.Object

javax.swing.filechooser.FileFilter

public static GOD.SimpleFileFilter extends FileFilter

Field Summary

Type Description

String description

String extension

Constructor Summary

Description

GOD.SimpleFileFilter(String extension, String description) +

Method Summary

Returns Description

public boolean accept(File f)

public String getDescription()

C.6 god.Legend 115

C.6 god.Legend

java.lang.Object

java.awt.Component

java.awt.Container

javax.swing.JComponent

javax.swing.JScrollPane

public Legend extends JScrollPane
implements MouseListener

Field Summary

Type Description

protected GOD gOD : Anchor to central application

protected ButtonGroup groupInsertMode

protected JPanel itemPane : Standard swing components

protected ArrayList items : The contained legndItems in specified order,
which determines succession of painting the associated
layers

protected JRadioButton-
MenuItem

miLine

protected JRadioButton-
MenuItem

miPoint

protected JRadioButton-
MenuItem

miPolygon

protected JPopupMenu popupMode

Constructor Summary

Description

Legend(GOD gOD) +
To instantiate a new Legend.

C.6 god.Legend 116

Method Summary

Returns Description

protected boolean isRightButton(MouseEvent e)

public void mouseClicked(MouseEvent e)
Invoked when the mouse has been clicked on a com-
ponent.

public void mouseEntered(MouseEvent e)
Invoked when the mouse enters a component.Empty

public void mouseExited(MouseEvent e)
Invoked when the mouse exits a component.

public void mousePressed(MouseEvent e)
Invoked when a mouse button has been pressed on a
component.

public void mouseReleased(MouseEvent e)
Invoked when a mouse button has been released on a
component.

public void rebuild()
For revalidating Legend if order of contained legen-
dItems has changed

C.7 god.LegendItem 117

C.7 god.LegendItem

java.lang.Object

java.awt.Component

java.awt.Container

javax.swing.JComponent

javax.swing.JPanel

public LegendItem extends JPanel
implements MouseListener,MouseMotionListener

Field Summary

Type Description

protected Object colorizingMember : Attributes to specify the color
of the gObjects contained in the associated layer

protected Color contEndColor

protected double contEndValue

protected Color contStartColor

protected double contStartValue

protected GSet layer : The associated layer

protected Legend legend : Back-link to container

protected boolean shrinked : A legendItem has two screen representa-
tions a short and an extended one to display additional
information

protected String title : The name written on it

protected Color uniqueColor

protected boolean visible : Shall the associated layer be drawn

Constructor Summary

Description

LegendItem(Legend legend, GSet layer) +
To construct and init a new legendItem

Method Summary

Returns Description

protected void drawDescription(Graphics2D g2)
To draw part of expanded representation, called from
within paintComponent(..)

public void mouseClicked(MouseEvent e)
To handle buttons within legendItem and to bring a
LegendItemDialog to screen

C.7 god.LegendItem 118

public void mouseDragged(MouseEvent e)
Invoked when a mouse button is pressed on a legen-
dItem and then dragged.

public void mouseEntered(MouseEvent e)
Invoked when the mouse enters a component.

public void mouseExited(MouseEvent e)
Invoked when the mouse exits a legendItem.

public void mouseMoved(MouseEvent e)
Invoked when the mouse button has been moved on a
legendItem (with no buttons no down).

public void mousePressed(MouseEvent e)
Invoked when a mouse button has been pressed on
legendItem.

public void mouseReleased(MouseEvent e)
Invoked when a mouse button has been pressed on
legendItem.

public void paintComponent(Graphics g)
Called from Java painting system to draw its contents

public String toString()
Human readable text of this LegendItem, good for de-
bugging

C.8 god.LegendItemDialog 119

C.8 god.LegendItemDialog

java.lang.Object

java.awt.Component

java.awt.Container

java.awt.Window

java.awt.Dialog

javax.swing.JDialog

public LegendItemDialog extends JDialog
implements ActionListener,ChangeListener

Field Summary

Type Description

protected JButton btnCancel

protected JButton btnElseColor

protected JButton btnEndColor

protected JButton btnOK

protected JButton btnStartColor

protected JButton btnUniqueColor

protected JPanel colorPane

protected JPanel colorSpecContPane

protected JPanel colorSpecDiscPane

protected JPanel colorSpecPane

protected JPanel colorUniquePane

protected LegendItem item : Anchor to know, where to change attributes

protected JList list

protected Vector memberNames

protected Vector members : All the attributes and methods with no
parameters from type of associated layer

protected JRadioButton radioBoundColor

protected JRadioButton radioContinuous

protected JRadioButton radioDiscrete

protected JRadioButton radioUniqueColor

protected ButtonGroup spectrumGroup

protected JTabbedPane taggedPane

protected JTextField txtEndValue

protected JTextField txtStartValue

protected ButtonGroup uniqueGroup

Constructor Summary

Description

LegendItemDialog(JFrame owner, LegendItem it) +
Constructs a new Dialog to specify appearance of gObjects in the item’s layer

C.8 god.LegendItemDialog 120

Method Summary

Returns Description

public void actionPerformed(ActionEvent e)
To bring user’s specifications to the legendItems fields

public void stateChanged(ChangeEvent e)
To update which is visible: btnUniqueColor or color-
SpecPane - depending on radio buttons

C.9 god.MapImage 121

C.9 god.MapImage

java.lang.Object

public MapImage extends Object

Field Summary

Type Description

protected String imageFilename : File, where the image has its per-
sistent ressource

protected transient Image img : Ressource of MapImage during runtime

protected String title : How it is called

protected boolean visible : Should it be painted

protected int x0 : position of upper left corner in model

protected int x1 : position of lower right corner in model

protected int y0

protected int y1

Constructor Summary

Description

MapImage(String filename) +
Constructs a new MapImage and initialises the transient img from file

Method Summary

Returns Description

protected void paint(Graphics2D g2, View v)
To draw the mapImage on a given view, position and
scale depends on relations to model specified in fields
x0, y0, x1, y1

public final int xi(int xm)
Model to image transformation

public final int xm(int xi)
Image to model transformation

public final int yi(int ym)
Model to image transformation

public final int ym(int yi)
Image to model transformation

C.10 god.MapImage.TableModel 122

C.10 god.MapImage.TableModel

java.lang.Object

javax.swing.table.AbstractTableModel

public static MapImage.TableModel extends AbstractTableModel

Field Summary

Type Description

protected ArrayList mapImages

Constructor Summary

Description

MapImage.TableModel(ArrayList mapImages) +
The ressource of table displaying opened mapImages.

Method Summary

Returns Description

public Class getColumnClass(int col)

public int getColumnCount()

public String getColumnName(int col)

public int getRowCount()

public Object getValueAt(int row, int col)

public boolean isCellEditable(int row, int col)

public void setValueAt(Object value, int row, int col)

C.11 god.Navigator 123

C.11 god.Navigator

java.lang.Object

java.awt.Component

java.awt.Container

javax.swing.JComponent

javax.swing.JPanel

public Navigator extends JPanel
implements ListSelectionListener,TableModelListener,TreeSelectionListener

Field Summary

Type Description

protected DefaultMutable-
TreeNode

assoRoot : root node for all associations

protected DefaultMutable-
TreeNode

collRoot : root node for all collections

protected GOD gOD : Anchor to central application

protected OverView overView : Custom component painting certain lay-
ers all over the model area

protected DefaultMutable-
TreeNode

root : root node containing collRoot and assoRoot

protected JTable tblMap : To display a list of all open mapImages

protected JTable tblSel : To display a list of all open selections

protected JTree tree : To visualise the collections and associations
structure

protected Default-
TreeModel

treeModel : Ressource of jTree’s data

Constructor Summary

Description

Navigator(GOD gOD) +

Method Summary

Returns Description

protected void buildTree()
Does invoke insertIntoTree(..) twice, once for collec-
tions and once for associations in the model

protected void insertIntoTree(TreeInsertable[] colls, Default-
MutableTreeNode root)
Algorithm to constuct the jTree from data model’s
collection or association structure.

protected void markAccordingMapImage(ViewFrame vf)
To mark the given viewFrame’s mapImage as row
within tblMap

C.11 god.Navigator 124

protected void markAccordingSelection(ViewFrame vf)
To mark the given viewFrame’s selection as row within
tblSel

protected void refreshTables()
Revalidates and repaints the contained tables

public void tableChanged(TableModelEvent e)
Called, when data in table is changed, to apply
changes

public void valueChanged(ListSelectionEvent e)
Called, when selection-row or mapImage-row in tables
is changed, to apply changes

public void valueChanged(TreeSelectionEvent e)
Called, when selected node in jTree is changed, to ap-
ply changes

C.12 god.OverView 125

C.12 god.OverView

java.lang.Object

java.awt.Component

java.awt.Container

javax.swing.JComponent

javax.swing.JPanel

gStructure.AbstractView

public OverView extends AbstractView
implements MouseListener,MouseMotionListener,Observer

Field Summary

Type Description

protected boolean dragBox

protected Navigator nav

protected int oldXv

protected int oldYv

protected boolean scaleBox

protected Selection selection

protected Map visibleLayers

Constructor Summary

Description

OverView(Navigator nav) +

Method Summary

Returns Description

protected View actView()

public void mouseClicked(MouseEvent e)

public void mouseDragged(MouseEvent e)

public void mouseEntered(MouseEvent e)
Invoked when the mouse enters overView.

C.12 god.OverView 126

public void mouseExited(MouseEvent e)
Invoked when the mouse exits overView.

public void mouseMoved(MouseEvent e)
Invoked when the mouse button has been moved on
overView (with no buttons no down).

public void mousePressed(MouseEvent e)
Invoked when a mouse button has been pressed on
overView.

public void mouseReleased(MouseEvent e)
Invoked when a mouse button has been pressed on
overView.

public void paintComponent(Graphics g)

protected Rectangle smallBoxV(View v)
Calculates the box-representation (yellow rect) of a
View

public void update(Observable o, Object arg)
Is called by model.notifyObservers, when changes oc-
cured.

C.13 god.OverView.Dialog 127

C.13 god.OverView.Dialog

java.lang.Object

java.awt.Component

java.awt.Container

java.awt.Window

java.awt.Dialog

javax.swing.JDialog

public OverView.Dialog extends JDialog
implements ActionListener

Field Summary

Type Description

protected JButton btnCancel

protected JButton[] btnColors

protected JButton btnOK

protected JCheckBox[] cboxLayers

Constructor Summary

Description

OverView.Dialog(OverView this\$0) +
Self-generating Dialog to chose displayed layers and their colors

Method Summary

Returns Description

public void actionPerformed(ActionEvent e)
Changes the visibleLayers field

C.14 god.Selection 128

C.14 god.Selection

java.lang.Object

gStructure.GSet

gStructure.GHashSet

public Selection extends GHashSet
implements Cloneable,Transferable

Field Summary

Type Description

public static final-
DataFlavor

gFlavor

protected String name : Displayed in table

protected static int nInstanciation : To be able to give a unique title

Constructor Summary

Description

Selection() +
Invokes Selection(name) with default generated name

Selection(String name) +
Constructs a Selection that will be registered in the contained objects.

Method Summary

Returns Description

public Selection copy()
Returns: A copy - referncing the same gObjects

public void deleteContent()
Invokes o.delete() for all contained gObjects o

protected Vertex edgeIn(Rectangle tolerance)
Returns: A vertex representing start of a edge within
tolerance. Or null

protected Point getMiddle()
The center of mbr()

public String getName()

public Object getTransferData(DataFlavor flavor)
Returns an object which represents the data to be
transferred.

public DataFlavor[] getTransferDataFlavors()
Returns an array of DataFlavor objects indicating the
flavors the data can be provided in.

C.14 god.Selection 129

protected boolean intersects(Rectangle rm)
Does the given Rectangle overlap any gObjects con-
tained in the selection?

public boolean isDataFlavorSupported(DataFlavor flavor)
Returns whether or not the specified data flavor is
supported for this object.

protected Selec-
tion.SinglePositionMarkerSet

markersIn(Rectangle tolerance, boolean multi-
pleAllowed)
Returns: A helper container where all points and ver-
tices (must be at exactly the same position) of con-
tained gObjects within tolerance are pushed in

protected Point nearestMarker(Point mousePos)
Returns: the point or vertex that is nearest to given
position

protected void paint(Graphics2D g2, View v)
To draw all the markers highlighted by dots in given
view

protected Selec-
tion.MarkerSet

selMarkers()

Returns: A helper container where all points and ver-
tices of all contained gObjects are pushed in

public void setName(String name)

public String toString()
Human readable text for this Selection, good for de-
bugging

protected void translateAnchored(Point anchor, Point target)
To translate the selection by vector v (target -
anchor)

C.15 god.Selection.MarkerSet 130

C.15 god.Selection.MarkerSet

java.lang.Object

public Selection.MarkerSet extends Object

see report for detailed description of MarkerSet

Field Summary

Type Description

protected Set gPointSet

protected Set vertexSet

Constructor Summary

Description

Selection.MarkerSet(Selection this\$0) +

Method Summary

Returns Description

protected void addAll()

protected boolean contains(GPoint p)

protected boolean contains(Vertex v)

C.16 god.Selection.SinglePositionMarkerSet 131

C.16 god.Selection.SinglePositionMarkerSet

java.lang.Object

god.Selection.MarkerSet

public Selection.SinglePositionMarkerSet extends Selection.MarkerSet

see report for detailed description of SinglePositionMarkerSet

Field Summary

Type Description

protected Point location

Constructor Summary

Description

Selection.SinglePositionMarkerSet(Selection this\$0) +

Method Summary

Returns Description

protected void addAll()
not allowed in DragMarkerSet, so it is overwritten
with empty statement

protected void addRequest(GPoint p)
A Gpoint can not be the 1st inserted point of the
DragMarkerSet, and even if there are already other
markers contained, the gPoint needs to be at the same
postion than those

protected void addRequest(Vertex v)

protected boolean isEmpty()

protected void moveTo(Point p)

protected void release()

C.17 god.Selection.TableModel 132

C.17 god.Selection.TableModel

java.lang.Object

javax.swing.table.AbstractTableModel

public static Selection.TableModel extends AbstractTableModel

The ressource of table displaying opened selections. Methods are called by Java’s cell-
renderer nad -editor to extract and modify data associated with the cells

Field Summary

Type Description

protected ArrayList selections

protected ArrayList viewFrames

Constructor Summary

Description

Selection.TableModel(ArrayList viewFrames, ArrayList selections) +

Method Summary

Returns Description

public Class getColumnClass(int col)

public int getColumnCount()

public String getColumnName(int col)

public int getRowCount()

public Object getValueAt(int row, int col)

public boolean isCellEditable(int row, int col)

public void setValueAt(Object value, int row, int col)

C.18 god.View 133

C.18 god.View

java.lang.Object

java.awt.Component

java.awt.Container

javax.swing.JComponent

javax.swing.JPanel

gStructure.AbstractView

public View extends AbstractView

Field Summary

Type Description

protected Control control : Its event-handler

protected int crossXm : Coordinates of crossmarker, displayed, if
selection is empty

protected int crossYm

protected MapImage mapImage : Background bitmap, may be null

protected JMenuItem miCopy

protected JMenuItem miCut

protected JMenuItem miPaste

protected JPopupMenu popupEdit : Standard swing components

protected Selection selection : The set of selected elements within this
View

protected ViewFrame vf : The container of it

Constructor Summary

Description

View(ViewFrame vf, int x0, int y0, double zoom) +

Method Summary

Returns Description

protected void fitToSelection()
Moves and scales the view such that it exactly contains
all the selected gObjects

protected Point getMiddle()
Returns: The middle of the view (in model coordi-
nates)

protected Rectangle getOwnRectM()
Returns: The represented rectangle in model of this
View

C.18 god.View 134

protected Color interpolatedColor(Color c0, Color c1, double
between)
Helper method to calculate the middle of c0 and c1
Parameters:
between : must be in the range [0, 1]!

public void paintComponent(Graphics g)
Central method of View, does paint mapImage, visible
layers in legend-specified order, selection and finally
gridlines, if zoom is high enough

public void refresh(Rectangle rm)
Does repaint just a certain area in model

protected void setMiddle(Point pm)
To move the view to a certain model position

protected void setZoom(double newZoom)
Does set the scale factor by bewaring middle of the
view at the same model position as before

C.19 god.ViewFrame 135

C.19 god.ViewFrame

java.lang.Object

java.awt.Component

java.awt.Container

javax.swing.JComponent

javax.swing.JInternalFrame

public ViewFrame extends JInternalFrame
implements Observer,ActionListener,KeyListener,TableModelListener,ListSelectionListener

Field Summary

Type Description

protected boolean anitaliased

protected JButton btnFindInvalid

protected JButton btnFitToSel

protected JButton btnQuery

protected TreePath collTreePath : To store, which is the node in navi-
gator’s jTree chosen for that viewFrame

protected GOD gOD : Anchor to central application

protected boolean gridShown

protected JLabel lblCrossX

protected JLabel lblCrossY

protected JLabel lblZoom

protected Legend legend : The associated legend

protected JSplitPane splitPaneH : Standard swing components

protected JSplitPane splitPaneV

protected CollectionTable table : The table to show gObjects member values

protected JScrollPane tablePane

protected JToolBar toolBar

protected JTextField txtCrossX

protected JTextField txtCrossY

protected JTextField txtZoom

protected View v : The displayed view

Constructor Summary

Description

ViewFrame(String title, GOD gOD) +

C.19 god.ViewFrame 136

Method Summary

Returns Description

public void actionPerformed(ActionEvent e)
Invoked when an action occurs.

public void keyPressed(KeyEvent e)
Invoked when a key has been pressed.

public void keyReleased(KeyEvent e)
Invoked when a key has been released.

public void keyTyped(KeyEvent e)
Invoked when a key has been typed.

protected void refreshTableSelection()
Called, to update table selection for being consistent
to view’s selection.

protected void setTable(CollectionWrapper coll)
To change the table to the one of another collection

public void tableChanged(TableModelEvent e)
called, when data in table is changed

public void update(Observable o, Object arg)
Called by model’s notifyObservers to tell the
viewFrame to repaint because of updates in data

public void valueChanged(ListSelectionEvent e)
called, when selection in table is changed

C.20 god.ViewFrame.QueryDialog 137

C.20 god.ViewFrame.QueryDialog

java.lang.Object

java.awt.Component

java.awt.Container

java.awt.Window

java.awt.Dialog

javax.swing.JDialog

public ViewFrame.QueryDialog extends JDialog
implements ActionListener

Field Summary

Type Description

protected JButton btnCancel

protected JButton btnOK

public String queryString : resulting String to invoke query-
machine with

public String resSelName : resulting name of Selection which will
contain query results

protected JTextArea txtQuery

protected JTextField txtSelection

Constructor Summary

Description

ViewFrame.QueryDialog() +
this constructor just initialises layout

Method Summary

Returns Description

public void actionPerformed(ActionEvent e)
to handle ok and cancel button in case of ok button
resSel is instantiated and queryString set according to
input of user, in case of cancel the dialog will just be
disposed and nothing further happens

Bibliography

[1] C. Parent, S. Spaccapietra and E.Zimányi Spatio-Temporal
Conceptual Models: Data Structures + Space + Time.
http://lbd.epfl.ch/e/publications/

[2] C. Parent, S. Spaccapietra, E.Zimányi, P. Donini, C. Plazanet and C.
Vangenot Modelling Spatial Data in the MADS Conceptual Model. In
Proceedings of the International Symposium on Spatial Data Handling,
1998. http://lbd.epfl.ch/e/publications/

[3] M. C. Norrie. Distinguishing Typing and Classification in Object Data
Models. http://www.globis.ethz.ch (Publications)

[4] A. Kobler and M. C. Norrie. OMS Java: An Open, Extensi-
ble Architecture for Advanced Application Systems such as GIS.
http://www.globis.ethz.ch (Publications)

[5] A. Wuergler and M. C. Norrie. OMS Pro Introductory Tutorial.
http://www.globis.ethz.ch (Publications)

[6] A. Kobler, B. Signer and M. C. Norrie. OMS Java Object-
Oriented Framework and Data Management System Manual.
http://www.globis.ethz.ch (Publications)

[7] S. Avelar. Generating Topologically Correct Schematic Maps. Technical
report 336, Department of Computer Science, ETH Zurich, October
2000.

[8] S. Avelar, R. Huber Modelling a Public Transport Network for Gener-
ation of Schematic Maps and Location Queries. In Proceedings of 20th
International Cartographic Conference, Peking, August 6-10, 2001.

[9] R. Huber A Slim and Open Data Model for Public Transport Network
using OMS raphael.huber@gmx.ch

[10] M. v. Kreveld, J. Nievergelt, T. Roos and P. Widmayer. Algorithmic
foundations of GIS. Springer 1997.

BIBLIOGRAPHY 139

[11] D. Flanagan Java in a Nutshell - 3rd Edition. O’Reilly 1999.

[12] G. Krüger Goto Java 2. Addison-Wesley 2000.

[13] M. Campione, K. Walrath The Java Tutorial, 3rd Edition Addison-
Wesley 2001.

[14] M. Campione, K. Walrath The JFC Swing Tutorial Addison-Wesley
1999.

[15] M. de Berg, M. van Kreveld, M. Overmars and O. Schwarzkopf Com-
putational Geometry - 2nd Edition. Springer 2000.

[16] K. Schutte An edge labeling approach to concave polygon clipping. ACM
Transactions on Graphics 1995.

[17] J. Nievergelt and K. H. Hinrichs Algorithms & Data Structures. Prentice
Hall 1993.

[18] E. Gamma, R. Helm, R. Johnson and J. Vlissides Design Patterns.
Addison-Wesley 1995.

[19] T. Oetiker, H. Partl, I. Hyna and E. Schlegl The Not So Short Intro-
duction to LATEX 2. ftp://ftp.dante.de/tex-archive/info/lshort

[20] R. Lamprecht Interactive Learning Components for the Study of Finite
Automata. http://www.tedu.ethz.ch/ifa

