m Global Information Systems Group
Prof. Moira C. Norrie

Eidgendssische Technische Hochschule Ziirich

Swiss Federal Institute of Technology Zurich Supervisor: Beat Signer

Diploma Thesis

Visualization of Trails and Tours

Corsin Decurtins, March 2002

Acknowledgments

This document is part of my diploma thesis in the Global Information Systems Group of Prof.
Moira C. Norrie at the Swiss Federal Institute of Technology in Zurich.

I would like to thank Beat Signer for his supervision and advice. With his uncomplicated and
helpful support, he contributed a lot to this work.

Another big thank goes to my fellows in misery Sabine Keuser, Ljiljana Vukelja, Urs Hardegger,
Daniel Miiller and Hugo Hugosson. Our coffee break discussions helped to keep a clear mind.

Special thanks go to Andrea Lombardoni (Systems Administrator of the Global Information
Systems Group) for setting up a new machine for me in record time and to Jason Brazile for
pointing out the worst mistakes in my report.

And last but not least, I would like to thank Bettina Schrag for keeping me attached to the
world beyond bits and bytes.

Zurich, March 4, 2002

Corsin Decurtins

ii

Eidgendssische Ecole polytechnique fédérale de Zurich
Technische Hochschule Politecnico federale di Zurigo
Ziirich Swiss Federal Institute of Technology Zurich
Diploma Thesis, Winter Term 2002

Visualization of Trails and Tours
Corsin Decurtins (D-INFK)

Introduction

With the increasing number of documents available nowadays in databases and on the inter-
net, the cross-linking of these documents becomes more and more important. In our group,
various systems have been developed to address this issue. One of these systems is the Intelli-
gent Caching Proxy, an HTTP proxy with a generic core that supports caching and prefetching
based on access patterns assembled by the proxy. These access patterns can also be used to
provide additional linking information for the documents.

Objectives

The aim of the project was to do surveys on both graph visualization techniques and existing
hypertext systems and to design and implement a generic and extensible visualization frame-
work for interlinked objects based on the results. A prototype application for web documents
was to be developed based on this framework and the Intelligent Caching Proxy application.

Results

We present TrailGuide, an Applet add-on for web browsers. It provides a graphical user inter-
face that supports visualization and manipulation of web documents and links. TrailGuide is
based on a generic visualization component and an XML-RPC based protocol for the retrieval
and update of graph data. The architecture of the application was specially designed to be
extendibles for other document types.

Outlook

The TrailGuide application could be extended for the support of other document types. A very
interesting candidate are database objects from the object-oriented database management sys-
tem OMS developed in the Global Information Systems Group. Another issue is the implemen-
tation of additional graph layout algorithms.

Contact

Beat Signer

Global Information Systems Group
IFW D 46.2

ETH Zentrum

CH-8092 Zurich

Phone: +41 1 632 06 76

Email: signer@inf.ethz.ch

http:/ /www.globis.ethz.ch/

mailto: signer@inf.ethz.ch
http://www.globis.ethz.ch/

Contents

1

Introduction

1.1 Interlinked Objects
1.2 Visualization
1.3 Knowledge Transfer
1.4 Visualization of Toursand Trails

Graph Visualization

2.1

2.2

2.3

24

Graph Representation
2.1.1 Geometrical Abstraction L o
212 VirtualReality
213 LandscapesandMaps oo
Graph Layout Algorithms oo
221 Two-Dimensional Trees
222 Three-Dimensional Trees
2.2.3 Force Optimization Algorithms
Optimizations for Large Graphs
231 ZoomandPan
232 Focus+Context e
233 FishEyeView
234 HyperbolicTrees
235 Clustering e
Conclusions

Hypertext Systems

3.1
3.2

3.3

OVerview e
CaseStudies
321 Webmap
3.2.2 WebBrain/PersonalBrain
323 StarTree o o e

ConcluSions o s,

10
10
10
11

4 Generic Visualization Framework

4.1
42

4.3

44
4.5

JGraph
Model Classes
421 GraphElements. o
422 GraphModel
Layout Algorithms
43.1 SpanningTreeLayout
43.2 LinkSplitLayout. L
Integrating the Component
Extending the Framework oo
451 Adding Document Types
452 Adding Layout Algorithms,

5 TrailGuide

51
52
5.3
54

Architecture e
Web Document Extension e
Graphical User Interface

TrailGuide Applet

6 Data Interchange Protocol

6.1

6.2

Data Structures and Special Values
6.1.1 Typeldentifiers
6.1.2 Collection Identifiers L
6.1.3 Document Data Structure
6.14 LinkDataStructure.
Methods
621 getGraph.
622 search
623 addLink
6.24 deleteLink
625 rateLink

7 User Guide

7.1
7.2

Graphical User Interface
Functionality
721 SearchforaDocument e

722 Browsing. e

19
19
19
19
20
21
22
23
23
24
24
24

25
25
26
27
28

31
31
31
31
32
32
33
33
33
33
33
34

723
724
725
7.2.6

A Assignment

AddLink
MoveLink
RateLink
Delete Link

Summary and Outlook

B Installation Guide

Bl Compiling

B.2 Installation o e

B.3 Running the Application o oL

C Data Interchange Protocol Examples
C1 getGraph

C.2 search

C.3 addLink e e
CA4 deletelink e,
C5 ratelink e

D API Documentation

D.1 chetctrailguide

D.2 chetc.trailguide.backend oo oo Lo

D.3 chetc.trailguide.framework L oo oo

D4 chetctrailguide.gui oL o

D.5 chetc.trailguidedayout o o oo

D.6 chetctrailguideweb L o

Bibliography
List of Tables

List of Figures

41

43

45
45
45
46

47
47
49
50
51
52

53
53
54
55
59
61
62

65

67

69

1 Introduction

The internet is the biggest collection of information that has ever been established in the history
of mankind. You can basically get information about anything from bleeding edge news about
the latest development in theoretical physics to ancient vegetarian recipes of the romans.

So the problem nowadays is usually not to get access to a piece of information, but to find it and
to sort out all the irrelevant information surrounding it. There have been many proposals on
how to solve this problem. For this diploma thesis, we will focus on three of them: Interlinked
Objects, Visualization and Knowledge Transfer.

1.1 Interlinked Objects

The most important innovation of the World Wide Web is the concept of hypertext. This concept
has already been used in earlier systems, but the big break-trough was clearly the World Wide
Web. Hypertext enhances conventional documents by adding the possibility to define links for
certain parts of the document. If for example the name of a person appears in a document, it
can be used as anchor for a link to a document with detailed information about this person or
maybe a photography. If someone is reading the first document and wants more information
about the person, he can follow the link to the more detailed document.

For experienced World Wide Web users of course, the concept of hypertext might look pretty
simple. And it is actually simple, but its impact for the organization of information was enor-
mous. Just imagine the World Wide Web without links. We could still access all the documents
by entering the URL manually into the web browser. So the amount of information would still
be the same but the troublesome access would make it much more difficult to find specific
information.

The ability to link parts of documents to other documents is really nice. But just for now, we
would like to use an even simpler model for hypertext. Let us interpret the World Wide Web as
a collection of documents, where some documents are linked to other documents. Which part
of the documents serve as anchors for the link is not important for the moment. The power of
hypertext with respect to finding relevant information can even be seen with this very simple
model. Once we have found a relevant document, we can find other relevant documents by
following the links. So links are basically pointers to other documents with similar content.

This concept of interlinked objects can also be used for other information sources than the World
Wide Web. A more abstract example is a database. Documents in this case would be queries to
the database or the results of these queries respectively. We can set two queries in relation to
each other by adding a link between these two objects. If a user now enters the first query, he
can also follow the link and gets access to other relevant information. The difference to hyper-
text is, that the links are not part of the objects, not built into the objects. The link information
exists in parallel to the objects. The big advantage of systems like this is that links can be added
without modifying the documents. Microcosm is an example of such a system. It is described in
[FHH90].

1.2 Visualization 1 Introduction
o \
/ \
\

Figure 1.1: Interlinked Objects

[Ty «+—— i

By applying this concept of interlinked objects to a collection of documents, the information
space becomes something like a web (the World Wide Web in case of the internet). For this
thesis we use this abstract view of information sources. So for us the World Wide Web is just
the special case of a general concept.

Another way of looking at this, is to see the links as a non-deterministic path through the infor-
mation space. Starting at a document, we can follow a path using one link after the other to get
to one document after the other. The paths might be authored or implicitly derived, determin-
istic or non-deterministic. Authored paths are also called tours. Whether they are deterministic
or not, does not matter that much. The World Wide Web is an example of a non-deterministic
tour. The links are authored, but there are usually multiple links for a document. An example
for a deterministic tour would be a guided tour through a website. Your browsing history on
the other side is an example of an unauthored path. The links between the documents are not
explicitly defined. They can be implicitly derived from your browsing behavior. Unauthored
paths are also called trails.

1.2 Visualization

In the last chapter, we have seen that the organization of information is a very important issue.
Theoretical access to a piece of information is completely irrelevant, if there is no efficient way
to find the piece of information. The same thing is also true for the presentation of information.
The visualization of information has a big effect on what we perceive.

In figure 1.2(a) we present a typical view of a hypertext document. The document contains
some content such as text and images and links to other documents. We do not actually see
the linked documents but we can see the link and some kind of abstraction (e.g. the title of the
linked document). This is also the traditional way of looking at web documents. The web doc-
ument is displayed in the web browser along with the embedded links. The linked documents
are abstracted by their anchor in the original document.

This view on hypertext documents is very useful, but it has its limitations. In our concept of
interlinked objects, this document view is a very detailed one. You can see all the details of the
document, but you are not able to get the big picture. The view is restricted to the current
document along with its links and maybe the neighbor documents. This is a very local view
where the global structure is not revealed.

In order to achieve a more global view, we have to take a step back from the painting. This is
addressed by visualizations. Documents and links are abstracted by simpler objects (e.g. icons

1 Introduction 1.3 Knowledge Transter

o .
— g E==pg

—>C N ?
= 15
g/ g

- A
H’\

(a) Traditional View (b) Visualization

i
/

—

|

7

AN
./

IS
I

P

4

Figure 1.2: Visualization of Documents and Links

and arrows) and a bigger area of the information space formed by the documents and links is
displayed. Figure 1.2(b) is an example of a simple visualization.

The content of the documents and so the actual information is not visible anymore. But the
visualization reveals implicit meta information about the documents. For example, we can as-
sume, that document A is pretty important and relevant since a lot of links are pointing toward
A. Document B can be assumed to be of less interest, since there is only one link to it.

We can also see two clusters of documents in figure 1.2(b). This can for example be explained
by the fact that the documents of the left cluster are related to one topic and the documents of
the right cluster are related to another topic.

To sum up, we can say that the meta information provided by such a coarse view to the docu-
ments can be very helpful in navigating the information space. But for the optimal benefit, we
probably need multiple, different views to the documents. A coarse overview does not help, if
we can not look at the documents themselves and a detailed view does not help that much, if
we are not able to find other relevant documents.

1.3 Knowledge Transfer

We have seen in the last two sections that the information on where to find information is a very
important resource. Let us assume that you want to work in a new field of knowledge, say graph
visualization. You know that there must be plenty of documents in the World Wide Web with
very useful information about this area. But before you can access these documents, you have
to find them. You probably search for known web sites covering topics closely related to the
desired one and use search engines. The beginning of this procedure tends to be very tedious,
but once you have found a relevant document it usually gets easier.

You can imagine, that it would be very helpful, if someone had already assembled a collection
of documents about the desired topic. This thesis for example is such a collection. Toward the
end of it on page 65, you will find the bibliography with links to very useful papers on graph
visualization. These papers again will have bibliographies with links to related papers. The
papers and bibliography references are authored links and form a tour for the topic of graph
visualization. This tour can be used by multiple users and can also be extended.

1.4 Visualization of Tours and Trails 1 Introduction

In the process of elaboration of this thesis, of course we also used this form of information
collections. We found a few papers and they helped us to find other papers and so on. But we
also gathered a lot of information by searching the internet using search engines and browsing
around. The browser history might also be a very useful source of information for someone
who wants to work into the topic of graph visualization. In contrast to the bibliography example,
the browser history does not just contain the documents and the links (i.e. the path through the
documents), but it also contains a weighting for the documents. It can be assumed, that I visited
the relevant web documents several times and the irrelevant documents just once.

The other big difference of the browser history example to the bibliography example is the fact,
that the browser history is private information. Even though it would be extremely helpful, it
can not be accessed by other users.

1.4 Visualization of Tours and Tralls

We suggest an application that combines all of the tree concepts described in the last sections:
Interlinked Objects, Visualization and Knowledge Transfer.

The linking of objects is addressed by the Intelligent Caching Proxy, an application developed
by Beat Signer. The current implementation supports caching of web documents and is used
as HTTP proxy between the web browser and the World Wide Web. The core of the Intelligent
Caching Proxy however is not restricted to web documents. It is described in the paper [SEN00]
and supports caching and prefetching of any objects that can be identified by a unique id. So
for example, it can also be used for the caching of queries to a database.

The link information is not assembled by analyzing the documents or database queries, but
computed by analyzing the access patterns of a user. That corresponds to the browser history
example. If the users accesses two documents one right after the other, than a link is added
between the documents. The more often this happens, the bigger the weight of the link gets.

These trail links can be combined with authored link collections (i.e. tours that the users can
define). So our model of the information space is a collection of documents (web documents,
database results, ...) with several collections of links (trail and tour collections).

The knowledge transfer is achieved by sharing the link information between users. Both the gen-
erated trails and the authored tours can be shared within a community and all the members of
this community can make use of the assembled meta information.

The objects themselves are accessed though the corresponding browser applications. It could be
a web browser for web documents or a generic browser for a database. This corresponds to the
document view mentioned earlier in this chapter. In parallel to this view, there is a visualization
of the meta information assembled by the Intelligent Caching Proxy. The documents and links
are visualized in form of a graph.

A person can use both views to access the data. He can click on a link in the web browser,
enter a new query in the database interface or he can interact using the graph visualization.
Changes in one view do also affect the other view. The manipulation of data on the other side
is restricted. The original object browsers are used to manipulate the data itself, if that was
intended. The graph view only allows to manipulate the meta data which means that a user
can add new links or delete links from the authored collections.

In chapters 2 and 3, we present surveys on graph visualization techniques in general and ex-
isting visualization systems for hypertext. In chapters 4 to 7, we present the implementation
of a generic framework for the visualization of interlinked objects and the TrailGuide prototype
application for web documents.

2 Graph Visualization

The visualization of graphs is a very complex topic. This of course is related to the fact that
graphs themselves are a very complex topic. Graphs can have many different properties rang-
ing from very small graphs with a few vertices and edges to huge graph structures with hun-
dreds and thousands of vertices and edges. Edges can be directed or undirected. The fanout!
of vertices can also vary from one or two edges to a fully connected graph?.

This variety of different graph types led to the development of even more visualizations for
graphs. Some of them are quite general. Others are specialized for graph types with specific
properties (e.g. trees or planar graphs®).

The visualization problem can be separated into two parts: The first issue is the graphical repre-
sentation of vertices, edges or high-order structures like subtrees or clusters. The other issue is
the specific layout for the chosen representation, i.e. the position of vertices and edges in space.

In this chapter, we would like to provide a small survey of a few graph visualizations along
with their most important features and restrictions. The aim of this survey is not an in-depth
discussion of the topic, but to provide a solid basis of decision for the choice of a suitable graph
visualization technique for the TrailGuide application.

2.1 Graph Representation

Before thinking about placing vertices and edges into a plane, one has to know how to draw
them, i.e. the graphical representation of vertices and edges.

2.1.1 Geometrical Abstraction

Graph objects can be abstracted by geometrical shapes. Vertices are represented by circles, el-
lipses, rectangles or more complex shapes. Edges are lines or arrows, straight or curved. See
figure 2.1 for some examples. To increase the usability of the visualization, the geometrical
shapes can be annotated with labels, colors, special icons and symbols and so on.

This is the most common graphical representation for graphs. It is widely used in the sciences,
especially in mathematics and computer science.

2.1.2 Virtual Reality

The counterpart of the geometrical abstraction is virtual reality. If a vertex is an abstraction of
a concrete object from the real world (e.g. a person), then the vertex could also be represented
by the object itself or by a graphical abstraction of this object (e.g. a photograph of the person).

The fanout is the number of edges that a vertex is connected to. It is also known as the arity of a vertex.
2A fully connected graph is a graph where every vertex is connected by an edge to every other vertex.
*Planar graphs can be visualized in the two-dimensional plane without intersecting edges.

2.2 Graph Layout Algorithms 2 Graph Visualization

C
12 \
0.75 1.o¥ /

E

m

Figure 2.1: Graph Representation with Geometrical Abstraction

For many applications this is a more intuitive approach, since it corresponds much more to
the real world. However, it does not work if the vertices represent abstract objects without
real world counterparts. Very often, it is also difficult to find suitable graphical representations
of the objects. What would be a suitable representation for a city? Should we use a picture
of the whole city or just a famous building? The Eiffel Tower could be a suitable graphical
representation of Paris. But what if a person does not know the Eiffel Tower or a particular city
is small enough not to have any famous buildings? For these cases, the abstraction of cities with
simple points and the city name is probably better.

2.1.3 Landscapes and Maps

At first glance, maps or landscapes do not differ much from normal visualizations. The differ-
ence is subtle, however. In most visualizations, the position of vertices and edges in a plane
does not really have a significance. The objects are placed by a layout algorithm (see section
2.2) according to rules that try to optimize for aesthetics.

In maps and landscapes, the position of the vertices and edges in a plane play a significant role.
Maps are two-dimensional visualizations on a plane or a sphere. In landscape visualizations,
there is the height as an additional dimension.

The obvious example is of geographical locations (e.g. cities) where the dimensions of the visu-
alization correspond to real world dimensions. A more abstract example is map visualization,
where the vertices represent people, edges relationships between people, and the axis of the
map correspond to weight and height of the people.

2.2 Graph Layout Algorithms

As mentioned in section 2.1.3, for landscape and map visualizations the position of a vertex on
the plane or in space is defined by properties of the vertex itself. For all other representations,
the position of vertices, edges and other graph structures (e.g. clusters) can be defined by the
visualization algorithm.

In this case, the goal for the graph layout is usually to optimize readability and aesthetic as-
pects. Some of these requirements can be specified in clear mathematical statements, e.g. the
number of edge crossings should be minimal. Other requirements, specially aesthetical ones,
are more difficult to put in words and even more difficult to put in an algorithm. Often, it is

2 Graph Visualization 2.2 Graph Layout Algorithms

also a question of taste and preference. Some people like the fanciness of three-dimensional
visualizations, other prefer the simplicity of two-dimensional visualizations.

Graph layout algorithms are a complex topic. There are no absolute rules and no common
opinion on which algorithms are the best. [BETT94] and [HMMO0] provide a good overview
on the most important graph layout and drawing algorithms.

2.2.1 Two-Dimensional Trees

Two-dimensional trees are the most common visualizations for small trees. Vertices and edges
of the tree are placed in a two-dimensional plane. The biggest advantage of two-dimensional
trees is their simplicity and intuitivity. The representation of the graph entities is usually a very
simple one: vertices are drawn as circles or boxes, edges are straight lines between the vertices.
This visualization is so simple that it can even be used for manual drawing of trees. Despite
this simplicity, there a several flavors of this traditional tree, which we will describe in the rest
of this section.

iy yrf”

(a) Rooted Trees (b) H-Tree
o]
(c) Radial View (d) Balloon View

Figure 2.2: Two-dimensional Tree Visualizations

Rooted trees are the classical tree visualization in computer science and mathematics. The tree
is drawn upside down with the root on top and the leaves at the bottom. For every vertex,
its children are placed one level lower. This simple rule is then applied recursively to all its
subtrees. All the vertices with the same distance from the root vertex are placed at the same
level and there are no edge crossings. See figure 2.2(a) for a simple example.

2.2 Graph Layout Algorithms 2 Graph Visualization

The H-tree visualization algorithm allows edges only to be drawn in horizontal or vertical di-
rection. See figure 2.2(b) for an example.

The radial view of a tree is generated by putting vertices with the same distance from the root on
a concentric circle around the root vertex. The radius of this circle increases with the distance
of the vertices to the root. An example of a radial view is given in figure 2.2(c).

The balloon view visualization is quite similar to the radial view. The children are placed on
a circle around their parent vertex, where the radius of the circle again decreases with the
distance of the parent vertex from the root of the tree. Figure 2.2(d) is an example of a balloon
view.

2.2.2 Three-Dimensional Trees

The main reason for using three-dimensional graph visualizations is the gain in space. More
vertices and edges fit into the three-dimensional space than onto a plane. The disadvantage
is, that the orientation and navigation is more complex. Because of that, three-dimensional
visualizations are usually interactive and the user can modify his viewpoint.

All of the two-dimensional tree visualizations described in section 2.2.1 can easily be general-
ized for use in the three-dimensional space.

Cone Trees

Cone trees are generalizations of the balloon view tree visualization described in section 2.2.1.
Every subtree is represented by a cone, where the cones of its children’s subtrees are placed in.

Figure 2.3: Cone Tree

Figure 2.3 (from [CK95]) is an example of such a cone tree visualization. The projection of a
cone tree to a plane perpendicular to the cone’s axis corresponds to the balloon view. Further
information about cone trees can be found in [RMC91] and [CK95].

2.2.3 Force Optimization Algorithms

Graph layout algorithms based on force optimization are inspired by similar algorithms in physics
and mechanics. The can be used for two- and three-dimensional visualizations. The basic idea
is a system of objects in space that attract or repulse each other. The algorithm minimizes the
corresponding forces on a global scale. In case of a graph, two vertices without a link between
them repulse each other, two vertices with a link attract each other.

2 Graph Visualization 2.3 Optimizations for Large Graphs

2.3 Optimizations for Large Graphs

An important issue in graph visualization is the ability to deal with large numbers of vertices
and edges. Most of the visualization techniques do have the ability to merely display a large
graph, but the visualizations often tend to be confusing.

To address this problem, people have developed various optimizations. With a few exceptions,
they can be applied to any visualization technique. The general idea is to omit graph elements
(see section 2.3.1), decrease them in size (section 2.3.2, 2.3.3 and 2.3.4) or to sum them up (section
2.3.5). Combinations of these strategies are possible.

2.3.1 Zoom and Pan

A class of solutions to this problem are the so called zoom and pan techniques. The visualization
thereby does not necessarily have to include all the vertices and edges. The view can pan to
a certain area of the graph (see figure 2.4(b)) and all the vertices and edges laying outside
a specified frame are not displayed. In addition to the panning, the view frame can also be
resized. In the visualization this results in a zooming effect (see figure 2.4(c)).

o N .

(a) Full View (b) Panning

o
i
.\

(c) Zooming

Figure 2.4: Zoom and Pan

2.3.2 Focus+Context

The biggest disadvantage of zoom and pan techniques is that you lose have context information
when you are looking at a specific detail of a graph, which often causes disorientation and
makes global browsing and navigation difficult.

2.3 Optimizations for Large Graphs 2 Graph Visualization

Exactly this issue is addressed by focus+context techniques. With these visualizations, the whole
graph is displayed, but the farther vertices and edges are away from the current center, the
smaller they are displayed. This is a very natural approach, since it corresponds much to the
way that the human eye percepts things.

Examples for focus+context visualization techniques are the fish eye view (section 2.3.3) and
hyperbolic trees (section 2.3.4).

2.3.3 Fish Eye View

The fish eye view visualizes a graph as if it was seen though a very strong and non-perfect
lens. Mathematically, the unit system of the plane is transformed by a distortion function in
order to make a special region of the plane bigger and the rest smaller. This usually results in
a nonlinear distortion as it can be seen in figure 2.5. A detailed paper about fish eye views is
[SB92].

SReEii=
VA
¥ ¥

(a) Normal View (b) Fish Eye View

\ N
\

\
‘-

Figure 2.5: Fish Eye View

2.3.4 Hyperbolic Trees

Hyperbolic trees are another example of a focus+context technique. They are generated by
placing a tree on a hyperbolic plane and projecting it to a flat two-dimensional plane. This
results in a circle shape, where the vertices at the edge of the circle are smaller and closer
together. There is more space and more level of detail toward the center of the circle. See figure
2.6 (from [LR94]) for an example of a hyperbolic tree. [LR94] and [LRP95] describe hyperbolic
trees in more detail.

2.3.5 Clustering

Techniques to deal with a very large number of objects have also been developed in classi-
cal scientific information visualization. One of theses techniques is clustering. Objects can be
summed up into clusters and in the visualization only the clusters are displayed representing
all of its objects.

10

2 Graph Visualization 2.4 Conclusions

Figure 2.6: Hyperbolic Tree

This technique can also be used for the visualization of graphs, especially for trees. The clus-
tering of vertices can either be computed with additional knowledge about the vertices or im-
plicitly by the graph structure.

2.4 Conclusions

On a first look, three-dimensional graph visualizations seem to be the most interesting ones.
They are able to visualize more data than the simple two-dimensional visualizations. The prob-
lem is, that the complexity of three dimensions is bigger and the risk is that this complexity
might outweigh the advantages. Our original purpose of a visualization was to reduce the
complexity of information and allow a more global view. With this requirement in mind, the
simpler two-dimensional visualizations is probably the better choice.

Both landscapes and maps or virtual reality representations are unsuitable for the TrailGuide ap-
plication. In the first case, the problem is the choice of a metric for the axis. Of course, one
could use something like the size of the document or the number of hits. But these metrics
are not very meaningful and the fact that two documents are close to each other in the visu-
alization would not necessarily mean that their content was similar. Proximity functions for
documents are known for information retrieval and classification problems from artificial in-
telligence. However, for this specific case the algorithms would probably be overkill.

One of the theses of our project is that two documents are related to each other if they are linked,
i.e. if there is an edge between the vertices. Our proximity function can therefore be derived
from the mathematical structure of the graph itself. Most of the graph layout algorithms take
this structure into account. Thus we do not have to look for explicit proximity functions since
the graph layout algorithms do the work for us.

Virtual reality visualization is also not very suitable. The problem here is the graphical abstrac-
tion of documents. There are no suitable icons that could represent a document other than the
document itself. And this is exactly what we are trying to avoid with our project.

11

2.4 Conclusions 2 Graph Visualization

The focus+context optimizations are very interesting, since our intention is to visualize informa-
tion spaces of infinite or at least huge size. Hyperbolic trees are a very interesting approach, but
unfortunately there are patent issues for this technology. Therefore, our choice is the fish eye
view. Clustering might also be of interest, specially if the clustering can be done using proper-
ties of the documents themselves. But we give clustering less priority than a solid graph layout
algorithm along with a fish eye view implementation.

12

3 Hypertext Systems

The number of existing hypertext systems is actually pretty high. The interesting thing is that
most of them are academic prototypes and have never actually been used in production envi-
ronments. Even though our hypertext system was also not designed for production use, this is
a disappointing observation. But questions about whether graphical visualizations of hypertext
make sense at all or why they are not successful certainly are beyond the scope of this thesis.

The most important issues that we would like to address in this survey are graph visualiza-
tion and the data source. The first issue has already been addressed in chapter 2. However, we
are specially interested in how these theoretical principals have been adapted by various ap-
plications. The second issue is the source of the data for the graph. Where do the applications
get this data from? Is the data specific to a user or can it be shared among the members of a
community?

In a first section, we would like to give a quick overview of a few very interesting implemen-
tations. The aim is not to provide a complete survey, but to describe some applications with
interesting and special features. In a second section, we would then like to have a more de-
tailed look at some applications that are of special interest for our application.

3.1 Overview

In this section, we will try to give an overview of existing hypertext systems. The selection
of the systems is not at all complete, but we think it is quite representative. A more complete
survey can be found in [BTB99].

A very simple 3D visualization is used by Natto [SM97]. The documents are visualized as la-
beled spheres and links between the documents are simple lines. This is nothing special yet.
Interesting however is, how the documents are positioned in space. Two axis are determined
by attributes of the documents. The third dimension can be manipulated by the user. Interest-
ing and essential documents can be put at the top and non-relevant documents at the bottom.

Another application using a similar approach is WebPath [FS98]. The difference is that the ver-
tical position is not determined by the user but by the system itself. The height of the docu-
ments increases with every visit, such that the most recently visited document is at the top. The
importance of a document is therefore automatically determined by the number of visits. An
additional, very interesting feature is a fogging effect. This effect is achieved by adding semi-
transparent layers to the visualization. Lower documents (i.e. older) appear less obscure than
the recent ones. The data for the visualization is taken from the browser history.

Narcissus [HDWB95] uses a force optimization algorithm for the graph layout (see section 2.2.3).
Another interesting feature of Narcissus is the implicit clustering based on the calculated posi-
tion of the documents.

Another application based on a force optimization algorithm is WWW3D [SBG'97] or its suc-
cessor HyperVIS [BB96]. Whereas WWW3D limits itself to the visualization of the browser his-

13

3.2 Case Studies 3 Hypertext Systems

tory, Hyper VIS also includes documents that have not been visited yet. They are automatically
derived from the current document by analyzing the links.

Applications based on the hyperbolic visualization described in section 2.3.4 have also been
proposed. Star Trees is one of them as described in more detail in section 3.2.3.

The interesting feature of the Open Text Web Index [Bra96] is the rendering of the vertices. The
vertices do not represent single web documents, but complete web sites. Attributes of these
websites like the number of documents and links are displayed as shapes of a composite object.
The placement of these three-dimensional objects on a plane is determined by the connectivity
of the objects, i.e. two objects are close together if they have a lot of links to and from each other.

A completely different approach was implemented in MAPA [DK98]. It is used to display the
structure of single websites. Documents are represented by small rectangular icons standing
upright on a plane. The child documents are placed in a row behind their parent document. The
use of this technique is pretty restricted. It basically only makes sense if the parent document
represents a specific topic and the children are documents of this topic. This is why it is usually
used to visualize well-organized company websites.

More in the direction of virtual reality are Web Forager / WebBook [CRY96]. Web documents are
not abstracted, but appear on projection planes in three-dimensional space. Multiple web docu-
ments can be assembled into bookcases. The organization of the visualization as well as the col-
lection of data is not done automatically. The application is rather a virtual, three-dimensional
workspace that serves as a replacement for bookmark collections.

3.2 Case Studies

After this short overview, we would like to take a closer look at three applications that are of
special interest in the context of the application we have in mind.

3.2.1 Webmap

Webmap is a rather simple hypertext visualization system. It was developed around 1994 and
is described in [Doe94]. Figure 3.1 (from [Doe94]) shows a screen shot of the application.

The system interacts directly with the Mosaic web browser. It automatically collects data from
the browser about the visited pages and can also load pages into the browser. Both the graph
representation and the graph layout algorithms are very simple. Documents are represented by
ellipses with numbers. Links are just simple lines. Additional information about the documents
is displayed at the top and the bottom of the window.

The most important and interesting features of Webmap are the simplicity of the graph visual-
ization and the automatic collection of data about the documents and links.

For the graph layout, the rooted tree algorithm described in section 2.2.1 is used. The tree is built
by loading documents into the browser. If non-tree edges! have to be added, the layout is not
affected and the edges are drawn into the existing tree layout. So the layout of the graph is
defined by a simple layout of the spanning tree which is calculated incrementally.

'In a tree, there is exactly one path from every vertex to an other vertex. The direction of an edge does not matter.
If a new edge would add an additional path, the graph would not be a tree anymore.

14

3 Hypertext Systems 3.2 Case Studies

Title: Johann Welfgang Goethe Universitt Intro
URL: bttpe/fsrwme uni—frankfurt de/

Current:

[-

=l

1p-

Title: Johann Wolfgang Goethe Universitit Intro
URL: htip: /v ani—frankfurt de/f

Touched:

Figure 3.1: Webmap

3.2.2 WebBrain/PersonalBrain

WebBrain? by the company The Brain® is a web directory and search engine (see figure 3.2 for a
screen shot). The special thing about this web directory is that the structure of the directory is
visualized as a graph using a Java Applet.

The graph representation is again a rather simple one. The directory entries are represented by
their title. The graph layout algorithm is a simple tree visualization. The root vertex, i.e. the
currently selected category, is displayed in the middle of the window. At the bottom are the
child categories of this vertex whereas its parent category is at the top. At the right side are
vertices which are on the same level as the current root vertex, i.e. that have the same parent
vertex. On the left side are alternative paths leading to the current vertex, i.e. basically the
“other parents” of the root vertex. By clicking on a category in the graph window, the graph is
updated with a nice animation and the links in this category appear in the lower frame of the
HTML page. The graph data is retrieved from the directory and link database.

PersonalBrain is another product by the same company. The application gives the user the pos-
sibility to build a new view to his file system, the internet or other information collections. The
vertices in this application can for example be documents on the local hard disk or documents
on the web. The data for the graph is specified by the user rather than being generated auto-
matically. The PersonalBrains can be shared among different users forming something like a
company brain.

The interesting thing about PersonalBrain is that the user can organize his own information
space. He can add elements to this information space, delete them and organize them in a
structured way. On the other hand, PersonalBrain does also allow one to integrate “brains”
from other people. This is especially interesting for knowledge transfer, e.g. if a user has to
work in a new field. An expert in this field could just send him his brain (or a part of it).

2WebBrain: http:/ /www.webbrain.com/
3The Brain: http:/ /www.thebrain.com/

15

http://www.webbrain.com/
http://www.thebrain.com/

3.3 Conclusions 3 Hypertext Systems

2 Lod = ERRAINN L Thie Smariest Way ba See the Wes ™ Hame Comgasy Abgat

] Fredaik Entar your search hem | @ orclickcategories above

Frelliinh E

| ACK SHLNCT - JIGALT, Spsciad indwrsal Cavap oni Adgorhara wad Compadstion Theory_ i e A0 H el infses | groa: for Trecavicnl Coanparias Soieras
e)

2. Alkyaskma. Ualcolsl ions apad Vermadae - Frieroes on dgonres, calodibors el Ioeroler reiedes) booin, g o el @ o
it s i

1 AN Sadees Cudlle - Prorecieas el aace cnol for 401 ey | sech-bisch wed ming fresas 5a el e vy oirer sy nivachares ned sl
Aty forern i Lo weree gl nf

4. CTATA: Cormarm Sgrifres ol Dafa Fpss Arerakon e e nlerel. 2 o origrsll sigeelyr: sramaion lood basd upes e coreepd. of sl ed cleds sbretorea. 1w o diribead el
it ariented architecters baosd upon CO RS el dloes dgorithrn coded i T o be sl sirsaled
i e R I AT AN Wi

5. Clepuley Cumies - & beis§ cisgnsson s Enpdsrmenda ion of sy oesess in
ity o -1 nl iy cabergn

0. Compal Gusic s Sevtng aed Searching - Agorthen el dals dneirn for sy o meceeg. Soro oo m Dol WE b ireiekes
. Il P

7. Duats el dd Mkpaalbalis - Corss B b, Uisesialy O Wt ism desmsih
g an ey vl b moernd e 35 i Tel el

4. Dala Steecieres Snd Rember Syatoms - by Soen Brosn
i 10

9 Dbty i Ayt a5, Btk SEvaolen s , md Powbibens - Thad i 5 ol Dordp o SOFTTIrS, MO0K T Do N, TR Lvic Dires 30 3 e ppecl D D0dTed, ailhy pednieal il e
L, e

£l

Figure 3.2: WebBrain

3.2.3 Star Tree

Star Tree* is a product of the company Inxight”. It is based on hyperbolic trees (see section 2.3.4)
and is mainly used for site maps of larger websites.

Figure 3.3 shows two screen shots of the site map of the Inxight website. The hyperbolic tree
can be manipulated by clicking in an empty area and dragging or by clicking on a vertex, which
causes it to be moved into the center. By doing this, new vertices show up and others disappear
at the border. By double-clicking on a vertex in the site map, it is moved into the center of the
tree and the corresponding document is loaded in the web browser.

The most interesting feature of this application is the fact that it is able to display a large number
of vertices and edges without making the visualization confusing.

3.3 Conclusions

The conclusions from the graph visualization survey are mostly confirmed. A simpler visu-
alization might be better for the users. The title of the document, maybe along with an icon
representing meta data (e.g. the size or the MIME type of the document), seems to be the rep-
resentation of choice.

4Inxight Star Trees: http://startree.inxight.com/
5Inxigh’c: http:/ /www.inxight.com/

16

http://startree.inxight.com/
http://www.inxight.com/

3 Hypertext Systems

3.3 Conclusions

inxight -’?

Sarver ProductsS

Partners

Custormers

Case Studies

Yariru Ma

S Factiva ra 15har

inxight *
Contact Us

Server Products

Customers

Case Stud

SDK Products

Comsha

Figure 3.3: Star Tree

An observation we made is that the context of a document is a very important resource. The
users literally tend to get lost without a proper visualization of the context. The Webmap appli-
cation for example, that we like a lot for its simplicity, lacks of this context.

The persistence of the accumulated graph data seems to be another issue. Some applications
we have seen assemble this data by analyzing the browser history. But this information is only
available as long as the browser is running. The next time the browser is started up, the accu-

mulation of graph data has to start from scratch.

Another interesting feature we have seen along the way is the fogging mechanism of the Web-
Path application. Important documents appear clearer in the visualization. Even though this is
quite a simple mechanism, it helps a lot to differentiate the relevant and the irrelevant informa-

tion.

17

3.3 Conclusions 3 Hypertext Systems

18

4 Generic Visualization Framework

The aim of this component is to provide a generic and extensible framework for the visualiza-
tion of interlinked objects. It is based on JGraph, a library for graph visualization that provides
most of the functionality and which is described in section 4.1. However, we implemented
some extensions to JGraph, implementing additional functionality specific to our requirements.
These extensions are described in sections 4.2 and 4.3. Sections 4.4 and 4.5 describe how to in-
tegrate the framework into an application.

4.1 JGraph

JGraph! is a Swing Component for graph drawing. It was developed by Gaudenz Alder in a
semester project in the Global Information Systems Group and a diploma thesis at the Elec-
tronics Laboratory, both part of the Swiss Federal Institute of Technology (ETH) in Zurich. The
JGraph component is described in the paper [Ald02].

JGraph provides a nice and flexible framework for graph drawing that fits well into the Swing
environment. The look and feel can easily be extended to meet almost any requirements. JGraph
supports various applications from graph editors like Graphpad? (developed by Gaudenz Alder
as well) to graph visualization components like our framework.

The main reason we chose JGraph is the fact that it perfectly meets our requirements. The basic
representation of the vertices and edges is quite simple, but extensible. JGraph provides a lot of
the basic functionality we need and the rest can easily be implemented by using and extending
the JGraph API The version of JGraph we use is JGraph 1.0 Release Candidate 1.

4.2 Model Classes

In order to support the special requirements of our graph visualization, we extend some of the
classes from the JGraph library. Extensions have been made to the graph elements Default-
GraphCell and DefaultEdge and to the graph classes JGraph and DefaultGraphModel

All these extensions can be found in the ch.etc.trailguide.framework package.

4.2.1 Graph Elements

In JGraph, the default implementations for vertices and edges are DefaultGraphCell and
DefaultEdge . We provide our own implementations Document and Link based on these
classes. See figure 4.1 for the class diagram.

1]Graph: http:/ /jgraph.com/
Graphpad: http:/ /jgraph.sourceforge.net/ graphpad.html

19

http://jgraph.com/
http://jgraph.sourceforge.net/graphpad.html

4.2 Model Classes 4 Generic Visualization Framework

The Link class has a unique identifier id , a collection identifier and a weight. The identifier
for Link is generated from the identifiers of its source and target documents along with the
collection identifier. The Link class provides a static method to construct this identifier.

The key features of the Document class are the identifier and label attributes that every doc-
ument must have and a method display . This method is used to display the document that
is represented by this object. The default implementation of display is empty, but it can be
implemented for specific types of documents by subclassing Document and overwriting the
method display . This is done by the TrailGuide application for web documents (see section
5.2), but it is not part of the generic visualization framework.

q:l com.jgraph.graph.DefaultGraphCell I interface
A ! com.jgraph.graph.Edge'
1 interface
|_.1‘:| com.jgraph.graph.DefaultEdge I java.lang.Comparablel
1
interface ? -
DocumentFactory I;I:I Document r'l:l Link
features - features
distance interface
createDocument —_— FeatureFactory Link
Document toString
A display compareTo
toString geticon constructld
| — getText <
id formatWeight id
DefaultbocumentFactory label getCollectionColor sourceDocument
mimeType getForegroundColor targetDocument
toolTipText getBackgroundColor weight
createDocument collection
toolTipText

Figure 4.1: Graph Element Extensions

To create new document instances, a factory pattern is used. This allows maximum flexibil-
ity and extendibility, since new types of documents can be added to the system at any time.
DocumentFactory defines the interface of such a document factory. A concrete implementa-
tion of this interface is DefaultDocumentFactory . It generates instances of Document, the
“fallback type” for documents.

Both the Document and the Link class make use of the FeatureFactory interface. This in-
terface provides labels, colors, icons and other properties or attributes relevant for the graphical
presentation.

4.2.2 Graph Model

Figure 4.2 shows the class diagram for the graph model extensions. The document factories
are managed by TrailGraphModel , an extension of the JGraph class DefaultGraphModel

New factories can be added to the model along with the type identifier of the documents they
support. In order to create a new document object, TrailGraphModel looks up the corre-
sponding factory and uses it to create the new instance. Again, this has been implemented for

20

4 Generic Visualization Framework 4.3 Layout Algorithms

web documents (see section 5.2). Attributes and properties for the graphical appearance of the
elements can be retrieved via the FeatureFactory interface.

|:||:] com.jgraph.JGraph
|

‘F ‘f

|:||:| com.jgraph.graph.DefaultGraphModel

TrailGraph I.:Ij TrailGraphModel interface
DocumentFactory
algorithms features
documents
TrailGraph links
addLayoutAlgorithm documentFactories createDocument
doLayout defaultDocumentFactory
getToolTipText
TrailGraphModel
addDocumentFactory interface
insertDocument FeatureFactory
removeDocument
insertLink
removeLink geticon
getDocument getText
formatWeight
links getCollectionColor
rootDocument getForegroundColor
getBackgroundColor

Figure 4.2: Graph Extensions

In addition to the document factoring, TrailGraphModel provides methods for inserting,
retrieving and deleting graph elements. This is required, since in our framework, documents
and links are usually accessed by their identifiers, which is not supported by JGraph.

TrailGraph is an extension of the JGraph class and provides support for layout algorithms.
This is explained in the next chapter.

4.3 Layout Algorithms

Since the aim of the JGraph library is graph editing rather than automated graph visualization,
it does not support any graph layout algorithms. Our implementations of these algorithms can

be found in the package ch.etc.trailguide.layout . See figure 4.3 for the class diagram
of this package.
GraphLayoutAlgorithm defines an generic interface for graph layout algorithms operating

on an instance of JGraph . All the layout algorithms have to implement this interface. Currently
there are two implementations available, but others can easily be added.

Layout algorithms implementing the GraphLayoutAlgorithm interface can be added to
the TrailGraph object. The TrailGraph object overwrites the method doLayout , which
is called by the Swing framework to layout the GUI objects. In order to lay out the graph, the
registered layout algorithms are invoked in the same order as they were registered with the
TrailGraph object.

This sequence of layout algorithms supports both absolute and incremental layout algorithms.
Absolute graph layout algorithms set the position of all vertices of the graph, independently of

21

4.3 Layout Algorithms

4 Generic Visualization Framework

interface

GraphLayoutAlgorithm

layout

T

i

ch.etc.trailguide.framework.TrailGraph

algorithms

TrailGraph
addLayoutAlgorithm
doLayout
getToolTipText

SpanningTreeLayout

LinkSplitLayout|

circleRadius
vertexSize
fontSize
cutDistance

layout

layout
getRadius
getSize
getFontSize

SpanningTreeLayout

Figure 4.3: Class Diagram for Layout Algorithms

any current position, whereas incremental graph layout algorithms only alter the position in order

to optimize the layout.

4.3.1 SpanningTreeLayout

The SpanningTreeLayout

algorithm belongs to the first group of algorithms. The layout of
the graph is determined by calculating a spanning tree® of the graph and laying out this tree
using the balloon view algorithm described in section 2.2.1. The size of the vertices and the
radius of the balloons decreases with the distance of the vertices from the root vertex. This
corresponds to some kind of fish eye view. Figure 4.4 shows a sample layout produced by this
algorithm. It was taken from the TrailGuide application.

e e S | S |
g Algorithms, Data ... g Department of Co...

g Department of Co...

ﬁ http:d foowninf et

|:=j Driartm i ed i |:=j |

g Depa:nment of Co...

Figure 4.4: Spanning Tree Layout Example

3The spanning tree is a subset of the graph, containing all the vertices and some edges of the graph, such that the
subset is a tree and any two vertices are connected by a sequence of edges.

22

4 Generic Visualization Framework 4.4 Integrating the Component

The spanning tree calculation is done by traversing the graph in a breadth-first order and adding
the edges to the tree if they do not violate the tree rule. The interesting feature of our implemen-
tation however, is that for every vertex, the edges to the neighbors are sorted by their weight
in a descending order and added only if the tree rule is not violated. The reason for this sort-
ing is that deleted edges are not respected by the balloon view layout algorithm and so might
influence the visualization of the graph in a negative way. By deleting only the edges with the
smallest weight, we try to keep this influence as small as possible.

4.3.2 LinkSplitLayout

A problem of the spanning tree layout algorithms is the rendering of multiple links between
two documents. Since links are just straight lines, they are painted one over the other and only
one link is visible in the end. This problem is not specific to the spanning tree layout algorithm,
but will arise for all algorithms, where links are just straight lines.

In JGraph, edges can be straight lines, quadratic curves or even bezier curves. The LinkSplit-
Layout makes use of this feature by altering the affected links to quadratic curves. The addi-
tional point for the calculation of the quadratic curve is added on a line that is placed in the
middle of the direct connection of the documents and perpendicular to it. See figure 4.5 for an
example.

Figure 4.5: Helper Points for the Quadratic Curves

4.4 Integrating the Component

The generic visualization framework is a Swing component and can easily be integrated into
any Swing-based application:

e Implement the FeatureFactory interface to provide labels, colors, icons and other
properties for the graphical visualization.

e Create a new instance of TrailGraphModel and add the document factories that you
desire. The fallback factory DefaultDocumentFactory , i.e. the document factory for
unknown cases, is already installed.

23

4.5 Extending the Framework 4 Generic Visualization Framework

e Create a new instance of TrailGraph using the prepared model object and configure it
using the methods provided by the JGraph class.

e Add the desired graph layout algorithms to the graph instance.
e Add mouse listeners to the graph in order to support your specific behavior.

o Integrate the graph object into your Swing GUL

The graph can now be manipulated by calling the methods of the TrailGraphModel

4.5 Extending the Framework

There are two kinds of possible extensions to the framework. One is the addition of new docu-
ment types, another the implementation of new graph layout algorithms.

4.5.1 Adding Document Types

The Document class provided by the framework should only be considered a base class and a
fallback. It implements nothing but the minimal requirements for documents and is not able to
display documents.

A new document type is added by subclassing the Document class. New attributes can be
added if needed. The method display has to be overwritten in order to display the document
that is represented by the object. For a web document for example, this would mean loading
the web page into the web browser. Along with this new document class, the corresponding
factory has to be supplied. This is done by implementing the DocumentFactory interface.
It is not absolutely necessary to implement a factory class for every new document class. A
factory can also create documents of multiple classes. As soon as the factory is registered with
the TrailGraphModel object with the corresponding type identifier, the new documents are
available to the application.

4.5.2 Adding Layout Algorithms

Another way of extending the functionality of the visualization framework is to add new graph
layout algorithms. This is done by implementing the GraphLayoutAlgorithm interface and
registering the algorithm with the TrailGraph object. Of course, both absolute and incremen-
tal layout algorithms can be implemented.

24

5 TraillGuide

5.1 Architecture

The TrailGuide architecture is based on the existing architecture of the Intelligent Caching Proxy.
See figure 5.1 for an overview.

Web Browser

Fy

Applet API
A 4
Trail Guide Data Interchange Graph Server
Generic Protocol 7
Yisualization

Figure 5.1: Overall Architecture

The TrailGuide is a component running on the client side. It is a plug in to the web browser,
implemented as a Java Applet. The communication with the web browser in done using the
Applet API. The TrailGuide is initialized with some parameters and uses the Applet API to load
pages into the web browser.

To get its data, the TrailGuide communicates with a Graph Server using the Data Interchange Pro-
tocol. This protocol is described in chapter 6. The GraphServer itself was not part of this thesis,
but we implemented a fake server with very limited functionality for testing and demonstra-
tional purposes. This GraphServer is not further described in this document.

The communication protocol between the GraphServer and the Intelligent Caching Proxy is not
fixed by the TrailGuide application. It is even imaginable, that the GraphServer functionality is
implemented by the Intelligent Caching Proxy itself. The TrailGuide application only needs a
server that implements the Data Interchange Protocol.

The inner architecture of the TrailGuide component is shown in figure 5.2. The TrailGuide ap-
plet is based on Swing and the generic visualization framework, which is described in chapter
4.

In order to support web documents, the TrailGuide provides extensions to the generic visu-
alization framework. These extensions are described in section 5.2. Other components are the
applet class itself and the classes for the Graphical User Interface. These classes are described in
section 5.3 and 5.4.

25

5.2 Web Document Extension

5 TrailGuide

Applet AP

Trail Guide Application

Web Exiension

Data
Interchange

Apache
XML-RPC

Swing

Generic
Visualization

JGraph

Figure 5.2: Architecture of the TrailGuide Application

5.2 Web Document Extension

The TrailGuide application provides the classes WebDocument and the corresponding factory
. See figure 5.3 for the class

WebDocumentFactory
diagram.

interface

ch.etc.trailguide.framework.DocumentFactory

createDocument

B

A

in the package ch.etc.trailguide.web

E'j ch.etc.trailguide.framework.Document

features
distance

Document
display
toString

id

ch.etc.trailguide.framework.DefaultDocumentFactory

WebDocumentFactory

createDocument

appletContext
contentWindow

WebDocumentFactory
createDocument

label
mimeType
toolTipText

WebDocument

url
appletContext
contentWindow

WebDocument
display

URL
toolTipText

Figure 5.3: Class Diagram for Web Document Extensions

The class WebDocument is an extension of Document the base class for all documents. It

provides an additional attribute url

and overwrites the display = method. If this display

method is called, the web document is loaded into the browser, using its URL and the Ap-

pletContext . WebDocumentFactory

26

is the corresponding implementation for the Docu-

5 TrailGuide

5.3 Graphical User Interface

mentFactory

interface for WebDocument. It is installed at the TrailGraphModel

web document identifier webdocument , i.e. for this identifier, the TrailGraphModel

the WebDocumentFactory

5.3 Graphical User Interface

The graphical user interface of the TrailGuide application is based on Swing and the Applet API.

to generate documents.

Its classes can be found in the ch.etc.trailguide.gui

diagram.

java.awt.event.MouseAdapter J
u

package. See figure 5.4 for the class

interface

java.awt.event.ActionListener
1

B

I_____I'____{____I'_____l
CellActionHandler I I I l l
DocumentPopupListener ClearButtonListener LinkPopupListener SearchButtonListener RefreshButtonListener
graph
ui graph graph graph ui graph
server server server graph ui
ClearButtonListener server server
CellActionHandler DocumentPopuplListener actionPerformed LinkPopupListener
mousePressed actionPerformed actionPerformed SearchButtonListener RefreshButtonListener
actionPerformed actionPerformed
interface
ch.etc.trailguide.framework.FeatureFactory
A ['] UserlInterface ch.etc.trailguide.backend.GraphServer
| BORDER. server
L features model
TrailGuideFeatures container . features
tourCollections
texts trailCollections GraphServer
weightFormatter collectionSelection search
unknownlcon searchTypeCombo getGraph
htmlicon searchKeyCombo addLink
imagelcon searchValue deleteLink
DARK_RED docPopup rateLink
DARK BLUE recursionDepthSlider
DARK_GREEN
YELLOW Userlnterface
;IF?/I_V\EILE collections ch.etc.trailguide.backend.GraphServerException
DARK GRAY searchType
LIGHT_GRAY searchKey
WHITE searchValue GraphServerException
BLACK documentPopup GraphServerException
linkPopup
TrailGuideFeatures recursionDepth
getlcon
getText
formatWeight
getCollectionColor
getForegroundColor
getBackgroundColor

for the

Figure 5.4: Class Diagram for the Graphical User Interface

The central class of the GUI is UserInterface . It is not derived from a Swing class, but it
holds Swing components, that are rendered into a given Swing container. These components
are not shown in the class diagram.

To implement the behavior of the user interface, the TrailGuide application provides vari-
ous ActionListener and one MouseListener . ClearButtonListener , RefreshBut-
tonListener and SearchButtonListener are obviously listeners for JButton instances.

27

5.4 TrailGuide Applet 5 TrailGuide

DocumentPopupListener and LinkPopupListener provide popup menu functionality
for documents and links. Mouse actions are supported by the CellActionHandler class,
that listens for actions on both document and link cells.

The class TrailGuideFeatures implements the FeatureFactory interface. It is used to
configure the graphical appearance of the application by providing labels, colors, icons and
other properties. It is both used by the UserInterface class, as well as the generic visualiza-
tion framework.

The user guide in chapter 7 provides additional information on the user interface.

5.4 TrailGuide Applet

As mentioned before, TrailGuide is a Java Applet. The class TrailGuide extends the class JAp-
plet . It implements the init method and the methods appletinfo and parameterinfo
See figure 5.5 for the class diagram.

I:;:I javax.swing.JApplet

[TrailGuide

VERSION

init

appletinfo
parameterinfo

Figure 5.5: Class Diagram for the TrailGraph Applet

The applet is embedded in a HTML document. See figure 5.6 for an example. The web browser
needs support for at least Java 1.4. The object tag is used to embed the applet. The width and
height of the applet are configurable.

The applet supports two parameters contentWindow and serverURL . contentWindow is
the name of the browser window displaying the documents. You can use _blank if you want
a new window to be opened every time. With the parameter serverURL , you can set the host
name, port number and path for the Graph Server. Remember that this URL has to be valid for
the client machine, so localhost is probably not the best idea for a productive system.

28

5 TrailGuide 5.4 TrailGuide Applet

<object classid="clsid:CAFEEFAC-0014-0000-0000-ABCDEFFEDCBA"
width="800" height="600" align="baseline"
codebase="http://java.sun.com/products/plugin/autod|/
jinstall-1_4 0-win.cab#Version=1,4,0,0">

<!-- object parameters -->

<param name="code" value="ch.etc.trailguide.TrailGuide"/>
<param name="codebase" value="."/>

<param name="archive" value="trailguide.jar"/>

<param name="type" value="application/x-java-applet;version=1.4">

<l-- applet parameters -->
<param name="contentWindow" value="trailGuideContent"/>
<param name="serverURL" value="http://localhost:80/"/>

</object>

Figure 5.6: HTML Code for the Embedding of the TrailGuide Applet

29

5.4 TrailGuide Applet 5 TrailGuide

30

6 Data Interchange Protocol

The data interchange protocol is based on synchronous XML-RPC messages. XML-RPC is a
protocol for remote procedure calls based on XML and HTTP. The parameters of the request
and the result values are encoded in a simple XML-based language. The caller invokes a remote
procedure by sending an HTTP POST request with the encoded parameters in its body. The
result of the procedure call is returned encoded in XML in the body of the HTTP response. See
[Win99] for details on the XML-RPC protocol.

The TrailGuide acts as an XML-RPC client and the Graph Server as the XML-RPC server, im-
plementing the XML-RPC procedures.

6.1 Data Structures and Special Values

Some XML-RPC data structures and special values are used for multiple calls. In the following
section, we will give a short overview.

6.1.1 Type Identifiers

The type identifier for documents is used to distinguish several document types (web docu-
ments, database queries, ...). In principle, type identifiers can have any value, i.e. the values are
not defined by the data interchange protocol, but by the applications using the protocol. How-
ever, the values that are currently supported by the TrailGuide application are enumerated in
table 6.1.

Value Description
any All documents
webdocument | Web documents, i.e. any document that can be identified by a URL

Table 6.1: Type Identifiers for the Data Interchange Protocol

6.1.2 Collection Identifiers

The collection identifier for links is used to classify the different sources of a link. Like type
identifiers, the values for collection identifiers are not defined by the protocol, rather than
the specific applications. Possible collections could be user defined links, links from the proxy
cache or links from the public collection of another person. See table 6.2 for the collection iden-
tifiers currently supported by the TrailGuide application.

31

6.1 Data Structures and Special Values 6 Data Interchange Protocol

Value Description

any All collections

private Private collection of the user

public Public collection of the user

document | Links extracted from the document itself (e.g. HTML links)
google Links to a document from the google search engine

cache Links from the proxy cache

friends Common collection of friend users

group Common collection of group users

Table 6.2: Collection identifiers for the Data Interchange Protocol

6.1.3 Document Data Structure

Table 6.3 shows the attributes of the document data structure. The mandatory fields must be
supplied in order to implement the protocol. Optional fields can be added depending on the
specific types of documents or links and on the specific implementation of clients and servers.
An optional field for documents is the MIME type. The applications should be tolerant regard-
ing missing optional links.

Attribute | XML-RPC Type | Mandatory | Description

id string * identifier of the document

label string * label for the document

type string * type identifier

url string url of the document (for web documents)
mimeType | string the mime type of the document

Table 6.3: Attributes of the Document Data Structure

The document identifier id is supplied by the server application. The client application (e.g.
TrailGuide) does not have to know anything about the internal structure of the id string.

6.1.4 Link Data Structure

The attributes of the link data structure are enumerated and described in table 6.4.

Attribute | XML-RPC Type | Mandatory | Description

source string * identifier of the source document
target string * identifier of the target document
weight double * weight for the link

*

collection | string collection identifier for the link

Table 6.4: Attributes of the Link Data Structure

The source and target strings are document identifiers. The weight of a link is a positive
real number. It does not necessarily have to be a probability, i.e. 0 <= weight <= 1.

32

6 Data Interchange Protocol 6.2 Methods

6.2 Methods

The following methods are supported by the data interchange protocol:

6.2.1 getGraph

The method getGraph is used to get the graph for a specific root document. The parameters
of the procedure are presented in table 6.5.

Parameter | XML-RPC Type | Description

id string identifier of the root document

depth integer maximum distance of documents from the root node
collections | array of strings | the identifiers of the collections

Table 6.5: Parameters of the getGraph Method

The result of the getGraph procedure is an array with two elements. The first one is an array of
documents, the second one is an array of links. See section 6.1.3 and 6.1.4 for a definition of the
document and link data structures. See appendix C.1 for a sample request and response.

6.2.2 search

The search method is used to search for documents. The parameters of the method are out-
lined in table 6.6.

Parameter | XML-RPC Type | Description

type string a type identifier

key string the key name of a property
value string the search string

Table 6.6: Parameters of the search Method

The response is an array of documents as defined in section 6.1.3. For a sample request and the
corresponding response see appendix C.2.

6.2.3 addLink

The semantics of this method depends on the collection that contains the link. Links can only
be added to user-defined link collections. The addition of a link to an automatically generated
collection is always ignored. In table 6.7 we show the method’s parameters.

The addLink method returns a boolean that tells the client whether the link has been added
successfully or not. A sample method call can be found in appendix C.3.

6.2.4 deleteLink

The semantics of this method depends on the collection that contains the link. For user defined
link collections, the link might be removed whereas for automatically generated collections, the
link is only hidden. The parameters are shown in table 6.8.

33

6.2 Methods

6 Data Interchange Protocol

Parameter | XML-RPC Type | Description
source string the identifier of the source document
target string the identifier of the target document
weight double the weight for the link
collection | string the collection identifier

Table 6.7: Parameters of the addLink Method
Parameter | XML-RPC Type | Description
source string the identifier of the source document
target string the identifier of the target document
collection | string the collection identifier

Table 6.8: Parameters of the deleteLink Method

The deleteLink method returns a boolean telling the client whether a link has really removed
or not. See appendix C.4 for an example of a method call.

6.2.5 ratelLink

The user can give feedback to the system about the generated links. One possibility is to simply
delete the link. The rating of links however is a more detailed one. Both generated and authored
links can be rated. The parameters for the rateLink method are shown in table 6.9. The return
value of the rateLink method is the double value which is new weight for the rated link. See
appendix C.5 for a sample request and response.

Parameter | XML-RPC Type | Description

source string the identifier of the source document
target string the identifier of the target document
collection | string the collection identifier

rating int the rating

Table 6.9: Parameters of the rateLink Method

rating is an integer parameter. The semantics can be defined by the application, but currently
the values in table 6.10 are supported.

Value | Semantics

0 not very important

1 quite important

2 important

3 very important

4 extremely important

Table 6.10: Values for the Rating Parameter of the rateLink ~ Method

34

7 User Guide

In the last chapters we described the architecture, design and implementation of the TrailGuide
application. In this chapter we want to present the graphical user interface of the application.
We describe the use of the different GUI components and the features of the application. The
compilation and installation of the system is described in appendix B.

7.1 Graphical User Interface

The TrailGuide is an Java Applet that runs within a web page. Figure 7.1 shows the application
window with a typical graph.

Collections
[v] Private

[v] Public

[v] Document
[v]

[Proxy Cache
[v]

[v] Group

Recursion Depth

012345
Control

Web Documents v\ URL ¥ |http: / jwsww.inf. 2thz. ch/index. htrml | searcn ‘

Figure 7.1: TrailGuide Window

On the right side is a configuration panel whereas at the bottom a search panel can be found. The
rest of the window is reserved for the concrete graph visualization.

The visualization only shows the title and the MIME type for documents, and the collection

and weight for links. A tooltip window providing additional information about a specific object
pops up on mouse over. See figure 7.2 for two examples.

The graph can be configured using the controls in the configuration panel on the right side. At
the top, you can select the link collections you would like to use. With the recursion slider, the
level of recursion used to build the graph can be set. Any changes of the configuration settings
do not immediately affect the graph, but are considered on the next update operation.

35

7.2 Functionality

7 User Guide

B Department of Com...

{77 htp:/ e infet...

MIME Type: textfhtml

THiNiDE IJRL: http: f feeedi, inf.ethz. chifindex. himl

Department of Computer Science
Identifier: url:http: f o inf. ethz. ch/findex. btml

l

(a) Document Tooltip

Figure 7.2: Tooltips

7.2 Functionality

7.2.1 Search for a Document

=] AlIAI of SwissProt..| = ETt

Collection: Coogle
eight: .44

(b) Link Tooltip

To search for a document, the search panel at the bottom of the page can be used. The settings of
the configuration panel have a direct influence on the search process. You can select the document
type, the attribute and a value for the selected attribute. By clicking on the search button, the
first document that matches is displayed along with the corresponding graph. If more than one
document is found, the right one can be chosen in a popup window.

[21 Auainof SwissProt.. [ETH: Computation.

=] Department of Co

=) Department of Co

9] Wttp:d feew.inf et

& Department of Com...

=] Department of Co

= httpd dwethz.oh)

Weh Documents v‘ URL ¥ | http: f jwsw.in. 2thz. ch/index. htrml

| searcn ‘

Collections

[v] Private

[Public

[vi Document
[V

[l Proxy Cache
[l

[Group

Recursion Depth

012345
Control

Figure 7.3: Search for a Document

Figure 7.3 shows the result of a search. The type of document was web document with the at-
tribute URL and value http://www.inf.ethz.ch/index.html. The activated link collections are Docu-
ment and Google, the recursion depth is 1. The matching document is highlighted.

36

7 User Guide 7.2 Functionality

7.2.2 Browsing

The most characteristic functionality is browsing the graph. By double-clicking on a document
of the graph, the document is loaded into the browser and the graph is updated.

Collections

[v] Private

[v] Public

[v] Document
]

[v] Proxy Cache
[v]

[¥] Group

Recursion Depth

=] hup:fiwww.ethz....

| http:f jwww_ethz

012 345
Control

=] mailtoweboffice m
Clear

B http://www.ethz.ch

= ETH Life - die t8a. +] Depanment of Ph..

=] Department of Co

Web Documents ¥ \| URL [http: f v in. ethz. ch/inclex. hrnl | searcn

Figure 7.4: Double-Click on a Graph Document

Figure 7.4 shows the application after such a browse operation. The user clicked on the docu-
ment http://www.ethz.ch. This document is now selected and the graph for this document was
retrieved from the server. The documents from the last view are still available in the graph, but
they appear smaller, since they are farther away from the current document. All the documents
that have already been visited are highlighted with a light gray background. What you can not
see in the screen shot is that the web document also has been loaded into the web browser.

7.2.3 Add Link

To some collections, links can also be added. Currently only the collections Private and Public
allow for the addition of links.

To add a link between two documents, both documents have to be visible on the screen. First,
the source document has to be selected. This is done by clicking once on the document in the
graph (see figure 7.5(a)). Next, click on the target document with the right mouse button, which
causes a popup menu to appear. Select Add Link and the collection you would like to add the

link to (see 7.5(b)). The new link is now added to the visualization and also on the server. This
can cause a re-layout of the graph.

If the link that you would like to add already exists in another collection and is displayed on
the screen, you can also just right-click on this link and add it with the same popup menu. After
the operation, both links will appear in the visualization and on the server.

7.2.4 Move Link

If you do not want to keep the old link, you can also just move it to the new collection. The

procedure is the same, but you select Move Link instead of Add Link. See figure 7.6 for a screen
shot.

37

7.2 Functionality 7 User Guide

_____________ =i De 3 o :
LE_'I_D_?p_al_IT?_nl_Ul’ EU_J 7] http:f fwn

= Department of Co...

[} |
== 4

|g] Department affa |

~ 7777 Add Link ¥ Private

(a) Select the Source Document (b) Select Target Document and Collection

= Department of Co...

| |
=)

(c) Link was added

Figure 7.5: Add a Link

g Department of Co...
T
Add Link N =] Department of Co...
n

Move Link » Private
Rate Link »| Public

Delete Link [27 bttp:d o inf et...

(a) Select new Collection (b) Link was moved

Figure 7.6: Move Link into another Collection

7.2.5 Rate Link

Rate Link can be used to give the system feedback about generated links or to change the weight
of authored links. See the screen shots in figure 7.7.

Select the link with a right-click and choose the rating from the popup menu. The links is
now updated. The width of the link corresponds to the new weight, which is determined by
the GraphServer. For authored links, it might exactly reflect your rating. For generated links
however, your rating might just be one of many and the effect on the link might be small.

7.2.6 Delete Link

Analogous to Add Link and Move Link, there is also a Delete Link menu item. Deletion of links is
possible for all the collections; the semantics however may vary. For the collections Private and
Public, deletion means that the link is removed from the collection. For the other collections,

38

7 User Guide 7.2 Functionality

Add Link 4

Move Link » g Department of Co...

Rate Link | not that important
Delete Link quite important
important

Very important
extremly important

v lURL = [t 7 fvsssws inf pthz b mareen

~
|ﬂ http:f fwwv.inf.et...

(a) Select the Rating (b) Link was rated

Figure 7.7: Rating Links
the link is not actually deleted, since this is either not possible (e.g. the Google collection, which
is generated using the google search engine) or would affect other users (e.g. the Friends col-

lection). For these collections, the link is only marked as deleted and is no longer displayed for
the current user.

39

7.2 Functionality 7 User Guide

40

8 Summary and Outlook

In chapter 1 we gave a quick introduction to the topic. The aim was to present the field of
research and to give a motivation for the importance of concepts like interlinked objects, visual-
ization and knowledge transfer.

In the following chapters 2 and 3 we presented a survey on graph visualization techniques and
on existing proposals and implementations of hypertext systems. The implications have been
vary valuable for the design and implementation of our own implementation. An important
conclusion we could draw, specially from the graph visualization survey, can be summarized
as: Less is more! Fancy three-dimensional visualizations look really nice, but you run the risk
that they confuse the user more than they help him. A rather simple, two-dimensional visual-
ization is usually more effective.

The first part of our implementation work was dedicated to a generic visualization component
for interlinked objects. This component was described in chapter 4. The aim was to design a
generic framework that could be extended to support any type of documents. The most impor-
tant issue here, next to the design of the framework, was the visualization of the documents
and links, specially the graph layout algorithms.

The proof of concept for the extendibility and usability of the visualization component was
provided with TrailGuide, a prototype application for web documents which was described in
chapters 5 to 7. This documentation includes the extension to the generic visualization compo-
nent for the support of web documents, the architecture and design of the TrailGuide applet
and the data interchange protocol used to communicate with the GraphServer backend that
provides and manages the graph data. As well as the generic visualization component, the
design of both the TrailGuide application and the data interchange protocol is extensible to
support other types of documents.

With the implementation of the TrailGuide prototype we have been able demonstrate the ben-
efits of our proposed system. Even though the visualization is still improvable, we were able to
see its positive effects, specially on the navigation within the information space of the internet.
The effect on other application areas (e.g. object-oriented databases), specially such that do not
provide links as integrated feature, is assumed to be even bigger. And although is has not re-
ally been used yet, the feature of sharing link collections in a community promises to be very
interesting.

Future Works

Even though the TrailGuide application has always been intended to be a prototype only, some
parts of it are probably worth investing more time. With our spanning tree algorithm and link
splitting algorithm we believe to have found a pretty good graph layout. Additional research
and development in this area however, would be very useful. This includes the algorithms
themselves, but also the way they are applied. In the current implementation, the layout algo-
rithms are run if necessary and then the result is displayed. This often results in a completely

41

8 Summary and Outlook

new layout, i.e. the objects on the screen are moved to a completely different place. This is un-
avoidable, but very confusing for the users. An animated motion of the objects would probably
help a lot.

Fogging is a very nice feature we discovered in our survey on hypertext systems. Since Swing
support alpha values for colors, it should be pretty easy to integrate this feature into our appli-
cation. The farther away a document is from the current root node, the smaller the alpha value
would be.

The configuration of the TrailGuide applet is currently done with constants in the source code,
a property file for texts and applet parameters. The text property file makes it very easy, to
port the applet to another language. The constants in the source code however impede a lot of
flexibility. The supported link collections for example do not depend on the applet, but on the
implementation of the GraphServer. Thus, another possibility would be to implement an addi-
tional XML-RPC call config to the GraphServer, which would basically provide configuration
data like this.

Another unsolved problem is the synchronization of the browser and the visualization view.
If the user clicks on a document in the TrailGraph applet, the web browser is updated and
displays the same page. However, if the user clicks on a link in the web browser or enters a
new URL, this change is not propagated to the graph visualization. The reason for this missing
feature are security restrictions in the Applet APL There is no possibility for the applet to get the
URL of the current document. A work-around however, would be to get this information from
the Intelligent Caching Proxy. If a new document is loaded by the web browser, the Intelligent
Caching Proxy (or the GraphServer) could make a callback to the applet. The big advantage
of such a mechanism is the independence from the specific browser. It would not matter if the
browser was a web browser or maybe a generic database browser.

In the development of the TrailGuide application, at lot of effort was put into a clean and
extensible design. The integration of the object-oriented database management system OMS
would be a very remunerative goal. A lot of components for such a project have already been
developed or are planned at least. The Intelligent Caching Proxy has always been intended to
support caching and prefetching of generic objects, not just web documents. This would also
include query responses to an OMS database. Generic browsers for such a database do also
exist.

42

A Assignment

Eidgendssische Ecole polytechnique fédérale de Zurich
Technische Hochschule Politecnico federale di Zurigo
Ziirich Swiss Federal Institute of Technology Zurich

Institute for Information Systems:
Prof. M. C. Norrie

Visualisation of Tours and Trails

Corsin Decurtins

The Intelligent Caching Proxy (ICP) is a proxy server which monitors regular web users and
tries to detect specific access patterns. Currently this information is used to improve web re-
sponse times by performing active prefetching of data. In a new project, the same statistics are
used to build dynamic trails (i.e. to dynamically build "virtual links” between different pages.
In the future, this linking mechanism will be extended to allow not only links between web
pages, but also any physical object which has a unique identifier.

The goal of this diploma project is to develop a visualisation component which enables a user
to browse his own virtual information space. The visualisation will include authored links
between objects (tours) and also dynamically built links (trails). The user should be able to
manually add new links, delete existing links and give feedback to the systems to improve the
performance of dynamically generated links. The visualisation framework will be used to build
a first prototype which will be a “trail guide” add-on for existing web browsers (a component
showing information about links between web pages based on monitored user behaviour).

The main tasks of this diploma thesis are as follows:

e Investigate existing Hypertext Systems (especially systems which dynamically gener-
ate trails) and existing visualisation technologies (regular graphs, cone trees, hyperbolic
trees, etc.).

e Define a format and protocol (e.g. SOAP) for the interchange of data between the link
generator and the visualisation component.

e Design of a framework for visualisation of any kind of interlinked objects (might be in-
spired by the former ‘jgraph’ project).

¢ Implementation of a "trail guide” as an add-on component for existing web browsers giv-
ing visual feedback about dynamically built links between different web pages.

43

A Assignment

Optionally the existing link generator framework may be extended with the functionality to
share linking information. The idea is that different users can share information about their
virtual worlds (using peer-to-peer technologies such as the Gnutella protocol). This will allow
users who have less or no knowledge about a specific object to build links based on information
of parts of the community.

The project report should give an overview of existing trail building systems and explain avail-
able visualisation techniques. It should describe in detail the generic visualisation component
and how it can be used to build specific applications. Finally, the architecture of the trail guide
application should be explained (e.g. communication with the link generator) and there should
be a user guide for this application as well.

Start Date: ~ Monday 5 November 2001
Environment: Java
Supervision: Beat Signer, [IFW D46.2

44

B Installation Guide

This appendix describes how to compile and install the TrailGuide application along with our
test server IGS (Intelligent Graph Server).

B.1 Compiling

The compiling process is driven by the GNU make tool. The main Makefile is in the direc-
tory $(PROJECT_ROOT)/src . It uses separate Makefiles for the TrailGuide application, the
documentation and currently also the test server.

The supported targets are:
all This is the default target. It compiles all the application files. The documenta-
tion is not affected.

check This target executes some checks on the sources and/or documentation, e.g.
unit tests (for applications) or spell checking (for documentation).

clean This cleans the source directory from temporary files.
distclean This cleans all the generated files.
doc This target is used to generate the documentation, both the report and the

API documentation for the source files.

install Install the application (see section B.2).

All the generated files are placed in a separate tree, rooted at $§(PROJECT_HOME)/generated .

B.2 Installation

The installation is triggered by the install ~ target of the Makefile .The make command takes
a parameter DESTDIRthat specifies where to install the application. The command might look
something like this:

make install DESTDIR=/opt/trailguide

In the $(DESTDIR) , the subdirectories doc, htdocs and lib are generated. doc holds the
documentation, i.e. several versions of this file and the HTML version of the API documenta-
tion generated by JavaDoc. lib holds the generated jar files for the backend applications. The
directory htdocs can be used as root directory for a web server. It contains HTML documents
for the TrailGuide applet, the jar file for the applet, other files and links to the documentation.

45

B.3 Running the Application B Installation Guide

B.3 Running the Application

The TrailGuide applet does not have to be started explicitly. It can just be accessed via the web
server. The test backend IGS is started up with the command

java -classpath igs.jar:xmirpc.jar ch.etc.igs.IGS PORT

where PORTis the port number. Make sure that PORTmatches the port number specified in the
HTML document holding the applet (trailguide.html)-

46

C Data Interchange Protocol Examples

C.1 getGraph

POST / HTTP/1.1
Content-Type: text/xml

<?xml version="1.0" encoding="1SO-8859-1"?>
<methodCall>
<methodName>getGraph</methodName>
<params>
<param>
<value>url:http://www.globis.ethz.ch/</value>
</param>
<param>
<value><int>2</int></value>
</param>
<param>
<value>
<array>
<data>
<value>private</value>
<value>public</value>
<value>cache</value>
<value>group</value>
</data>
</array>
</value>
</param>
</params>
</methodCall>

HTTP/1.1 200 OK
Content-Type: text/xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<methodResponse>
<params>
<param>
<value>
<array>
<data>
<value>

47

C.1 getGraph C Data Interchange Protocol Examples

<array>
<data>
<value>
<struct>
<member>
<name>label</name>
<value>ETH Zurich</value>
</member>
<member>
<name>type</name>
<value>webdocument</value>
</member>
<member>
<name>id</name>
<value>url:http://www.ethz.ch/</value>
</member>
<member>
<name>mimeType</name>
<value>text/html</value>
</member>
</struct>
</value>
<value>
<struct>
<member>
<name>label</name>
<value>Global Information Systems</value>
</member>
<member>
<name>type</name>
<value>default</value>
</member>
<member>
<name>id</name>
<value>url:http://www.globis.ethz.ch/</value>
</member>
</struct>
</value>
</data>
</array>
</value>
<value>
<array>
<data>
<value>
<struct>
<member>
<name>collection</name>
<value>default</value>
</member>

48

C Data Interchange Protocol Examples

C.2 search

<member>
<name>weight</name>
<value><double>0.5</double></value>

</member>

<member>
<name>source</name>
<value>url:http://www.ethz.ch/</value>

</member>

<member>
<name>target</name>
<value>url:http://www.inf.ethz.ch/</value>

</member>

</struct>
</value>
</data>
</array>
</value>
</data>
</array>
</value>
</param>
</params>
</methodResponse>
C.2 search

POST / HTTP/1.1
Content-Type: text/xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<methodCall>
<methodName>search</methodName>
<params>
<param>
<value>webdocument</value>
</param>
<param>
<value>url</value>
</param>
<param>
<value>http://www.inf.ethz.ch/index.htmi</value>
</param>
</params>
</methodCall>

HTTP/1.1 200 OK
Content-Type: text/xml

<?xml version="1.0" encoding="1SO-8859-1"?>

49

C.3 addLink C Data Interchange Protocol Examples

<methodResponse>
<params>
<param>
<value>
<array>
<data>
<value>
<struct>
<member>
<name>url</name>
<value>http://www.inf.ethz.ch/index.html</value>
</member>
<member>
<name>label</name>
<value>Department of Computer Science</value>
</member>
<member>
<name>type</name>
<value>webdocument</value>
</member>
<member>
<name>id</name>
<value>url:http://www.inf.ethz.ch/index.htmi</value>
</member>
</struct>
</value>
</data>
</array>
</value>
</param>
</params>
</methodResponse>

C.3 addLink

POST / HTTP/1.1
Content-Type: text/xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<methodCall>
<methodName>addLink</methodName>
<params>
<param>
<value>url:http://www.inf.ethz.ch/index.htmli</value>
</param>
<param>
<value>url:http://www.ethz.ch</value>
</param>
<param>

50

C Data Interchange Protocol Examples

C.4 deleteLink

<value><double>1.0</double></value>
</param>
<param>
<value>public</value>
</param>
</params>
</methodCall>

HTTP/1.1 200 OK
Content-Type: text/xml

<?xml version="1.0" encoding="1SO-8859-1"?>
<methodResponse>
<params>
<param>
<value><boolean>0</boolean></value>
</param>
</params>
</methodResponse>

C.4 deleteLink

POST / HTTP/1.1
Content-Type: text/xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<methodCall>
<methodName>deleteLink</methodName>
<params>
<param>

<value>url:http://www.inf.ethz.ch/index.htmli</value>

</param>

<param>
<value>url:http://www.ethz.ch/</value>

</param>

<param>
<value>document</value>

</param>

</params>
</methodCall>

HTTP/1.1 200 OK
Content-Type: text/xml

<?xml version="1.0" encoding="1SO-8859-1"?>
<methodResponse>
<params>
<param>
<value><boolean>1</boolean></value>

51

C.5 rateLink C Data Interchange Protocol Examples

</param>
</params>
</methodResponse>

C.5 rateLink

POST / HTTP/1.1
Content-Type: text/xml

<?xml version="1.0" encoding="IS0O-8859-1"?>
<methodCall>
<methodName>rateLink</methodName>
<params>
<param>
<value>url:http://www.inf.ethz.ch/index.html</value>
</param>
<param>
<value>url:http://www.ethz.ch</value>
</param>
<param>
<value>cache</value>
</param>
<param>
<value><int>3</int></value>
</param>
</params>
</methodCall>

HTTP/1.1 200 OK
Content-Type: text/xml

<?xml version="1.0" encoding="1SO-8859-1"?>
<methodResponse>
<params>
<param>
<value><double>0.8</double>
</value>
</param>
</params>

52

D APl Documentation

This is an abridged version of the JavaDoc API documentation for the TrailGuide application
and the generic visualization component. For more details, use the HTML version of the API
documentation.

D.1 ch.etc.trailguide

This is the root package for the trail guide application. It contains the application classes only.
All the other classes of the application can be found in the subpackages.

ch.etc.trailguide.TrailGuide

java.lang.Object
java.awt.Component
java.awt.Container
java.awt.Panel
java.applet.Applet
javax.swing.JApplet

public TrailGuide extends JApplet

Trail Guide
Fields
public static final VERSION
String the version
Constructors
TrailGuide()
Methods
public String getAppletinfo()
get information about the applet
public String[][] getParameterinfo()
get the parameter information

53

D.2 ch.etc.trailguide.backend D API Documentation

public void init()
initialize the applet

D.2 ch.etc.trailguide.backend

This package contains classes for the access to the backend, i.e. the graph server.

ch.etc.trailguide.backend.GraphServer

java.lang.Object

public GraphServer extends Object

This class represents the graph server. It provides methods to access this graph server using the
data interchange protocol and updates the graph model.

Constructors

GraphServer(XmIRpcClient server, TrailGraphModel model,
FeatureFactory features)

constructor
Methods

public void addLink(Link link)
add a link

public void deleteLink(Link link)
delete a link

public void getGraph(String root, int depth, Vector
collections)
get the graph

public void rateLink(Link link, int rating)
rate a link

public Document]] search(String type, String key, String
value)
search the model for a specific document

ch.etc.trailguide.backend.GraphServerException

java.lang.Object
java.lang.Throwable
java.lang.Exception

public GraphServerException extends Exception

GraphServer Exception

54

D API Documentation D.3 ch.etc.trailguide.framework

Constructors

GraphServerException(String message)

constructor without cause exception
GraphServerException(String message, Throwable cause)
constructor with cause exception

D.3 ch.etc.trailguide.framework

This package contains classes and interfaces of the generic visualization framework.

ch.etc.trailguide.framework.DefaultDocumentFactory

java.lang.Object

public DefaultDocumentFactory extends Object
implements DocumentFactory

Default Document Factory

Constructors

DefaultDocumentFactory()

Methods

public Document createDocument(String id, String label,
Map attributes, FeatureFactory features)
create a new document

ch.etc.trailguide.framework.Document

java.lang.Object
javax.swing.tree.DefaultMutable TreeNode
com.jgraph.graph.DefaultGraphCell

public Document extends DefaultGraphCell

Document
Fields
public int distance
the distance from the root node
protected features
FeatureFactory the feature factory

55

D.3 ch.etc.trailguide.framework

D API Documentation

Constructors

Document(String id, String label, String mimeType,
FeatureFactory features)

constructor
Methods
public void display()
display this document
public final String getld()
get the id of the document
public String getLabel()
get the label of the document
public String getMimeType()
get the mime type of the document
public String getToolTipText()
get the tool tip text
public String toString()
get the string representation

ch.etc.trailguide.framework.DocumentFactory

public interface DocumentFactory

Interface of a document factory

Methods

public

Document

create a new document

createDocument(String id, String label,
Map attributes, FeatureFactory features)

ch.etc.trailguide.framework.FeatureFactory

public interface FeatureFactory

This interface defines methods for access to various GUI features, e.g. labels, colors, icons...

Methods

public String formatWeight(double weight)
format a weight

public Color getBackgroundColor(boolean current,
boolean visited)
get the background color

public Color getCollectionColor(String collection)
get collection color

56

D API Documentation D.3 ch.etc.trailguide.framework

public Color getForegroundColor(boolean current,
boolean visited)
get the foreground color

public Imagelcon getlcon(String mimeType)
get icon

public String getText(String key)
get the text for a key

ch.etc.trailguide.framework.Link

java.lang.Object
javax.swing.tree.DefaultMutable TreeNode
com.jgraph.graph.DefaultGraphCell
com.jgraph.graph.DefaultEdge

public Link extends DefaultEdge
implements Comparable

Link
Fields
protected features
FeatureFactory the feature factory
Constructors
Link(String id, double weight, String collection, FeatureFactory
features)
constructor
Methods
public int compareTo(Object obj)
compare to an other object
public static String constructld(Document source, Document
target, String collection)
construct a link id
public String getCollection()
get the collection identifier for this link
public final String getld()
get the id of the link
public Document getSourceDocument()
get the source document
public Document getTargetDocument()
get the target document
public String getToolTipText()
get the tool tip text

57

D.3 ch.etc.trailguide.framework D API Documentation

public double getWeight()
get the weight of the link
public String toString()
get the string representation of this link

ch.etc.trailguide.framework. TrailGraph

java.lang.Object
java.awt.Component
java.awt.Container
javax.swing.JComponent
com.jgraph.JGraph

public TrailGraph extends JGraph
This is the graph for the Trail Guide applications.

Constructors
TrailGraph(TrailGraphModel model)
constructor
Methods
public void addLayoutAlgorithm(GraphLayoutAlgorithm
algorithm)
add a layout algorithm
public void doLayout()
layout the graph
public String getToolTipText(MouseEvent event)
get the tooltip text

ch.etc.trailguide.framework. TrailGraphModel

java.lang.Object
javax.swing.undo.UndoableEditSupport
com.jgraph.graph.DefaultGraphModel

public TrailGraphModel extends DefaultGraphModel

This is the graph model for the Trail Guide applications. It extends the DefaultGraphModel of
the JGraph framework and provides additional functionality.

Constructors

TrailGraphModel(FeatureFactory features)
constructor

58

D API Documentation D.4 ch.etc.trailguide.gui

Methods

public void addDocumentFactory(String type,
DocumentFactory factory)
add a document factory

public Document getDocument(String id)
get the document

public Collection getLinks()
get all the links

public Document getRootDocument()
get the root document

public Document insertDocument(String id, String label,

String type, Map attributes)

add a new document

public Link insertLink(Document source, Document
target, double weight, String collection)
add a new link

public void removeDocument(Document doc)
remove a document
public void removeLink(Link link)
remove a link
public void setRootDocument(Document rootDocument)

set the root document

D.4 ch.etc.trailguide.gui

This package contains classes and interfaces for the graphical user interface.

ch.etc.trailguide.gui.CellActionHandler

java.lang.Object
java.awt.event.MouseAdapter

public CellActionHandler extends MouseAdapter

Cell Action Handler

Constructors

CellActionHandler(JGraph graph, Userinterface ui, GraphServer
server, FeatureFactory features)
constructor

Methods

public void mousePressed(MouseEvent event)
mouse button was pressed

59

D.4 ch.etc.trailguide.gui D API Documentation

ch.etc.trailguide.gui.TrailGuideFeatures

java.lang.Object

public TrailGuideFeatures extends Object
implements FeatureFactory

This class implements the FeatureFactory interface and so provides the specific TrailGuide fea-
tures.

Constructors

TrailGuideFeatures(Applet applet)

constructor
Methods

public String formatWeight(double weight)
format a weight

public Color getBackgroundColor(boolean current,
boolean visited)
get the background color

public Color getCollectionColor(String collection)
get collection color

public Color getForegroundColor(boolean current,
boolean visited)
get the foreground color

public Imagelcon getlcon(String mimeType)
get icon

public String getText(String key)
get the text for a key

ch.etc.trailguide.gui.UserInterface

java.lang.Object

public Userinterface extends Object

Graphical User Interface

Constructors

Userinterface(Container container, JGraph graph, FeatureFactory
features, GraphServer server)
default constructor

Methods

60

D API Documentation D.5 ch.etc.trailguide.layout
public Vector getCollections()
get the selected collections
public Container getContainer()
get the parent
public JPopupMenu getDocumentPopup()
get the popup menu for documents
public JPopupMenu getLinkPopup()
get the popup menu for links
public int getRecursionDepth()
get recursion depth
public String getSearchKey()
get the chosen search key
public String getSearchType()
get the chosen search type
public String getSearchValue()
get the search value

D.5 ch.etc.trailguide.layout

This package contains various graph layout algorithms.

ch.etc.trailguide.layout.GraphLayoutAlgorithm

public interface GraphLayoutAlgorithm

Defines the interface of a graph algorithm.

Methods

public void layout(JGraph graph)
layout the graph

ch.etc.trailguide.layout.LinkSplitLayout

java.lang.Object

public LinkSplitLayout extends Object
implements GraphLayoutAlgorithm

This class implements an layout algorithm that handles multiple links between two documents.
The links are altered from straight lines to curves, such that all the links are visible.

Constructors

LinkSplitLayout()

61

D.6 ch.etc.trailguide.web

D API Documentation

Methods

public void

layout(JGraph graph)
layout the graph

ch.etc.trailguide.layout.SpanningTreeLayout

java.lang.Object

public SpanningTreeLayout extends Object
implements GraphLayoutAlgorithm

This class implements a graph layout algorithm using spanning trees. The spanning tree of the
graph is calculated. For conflicting links, the link with the bigger weight is chosen.

Constructors

constructor

SpanningTreeLayout(int circleRadius, Dimension vertexSize, float
fontSize, int cutDistance)

Methods

public void

layout(JGraph graph)
layout the graph

D.6 ch.etc.trailguide.web

This package contains specific classes and interfaces for the trailguide graph visualization for

web documents.

ch.etc.trailguide.web.WebDocument

java.lang.Object

javax.swing.tree.DefaultMutableTreeNode
com.jgraph.graph.DefaultGraphCell
ch.etc.trailguide.framework.Document

public WebDocument extends Document

Web Document

Constructors

constructor

WebDocument(String id, String label, String mimeType, URL
url, AppletContext appletContext, String contentWindow,
FeatureFactory features)

62

D API Documentation D.6 ch.etc.trailguide.web
Methods
public void display()
display the content of this object
public String getToolTipText()
get the tool tip text
public URL getURL()
get the url

ch.etc.trailguide.web.WebDocumentFactory

java.lang.Object

public WebDocumentFactory extends Object

implements DocumentFactory

Web Document Factory

Constructors

contentWindow)
constructor

WebDocumentFactory(AppletContext appletContext, String

Methods

public Document

createDocument(String id, String label,
Map attributes, FeatureFactory features)
create a new document

63

D.6 ch.etc.trailguide.web D API Documentation

64

Bibliography

[A1d02]

[BB96]

[BETT94]

[Bra96]

[BTB199]

[CK95]

[CRY96]

[DK98]

[Doe94]

[FHH90]

[FS98]

[HDWB95]

[HMMO0]

Gaudenz Alder. Design and implementation of the JGraph Swing component.
http:/ /jgraph.sourceforge.net/paper.html, March 2002.

Chris C. Brown and Steven D. Bendfort. Tracking WWW users: Experience from
the design of HyperVIS. In Proceedings of WebNet’96: World Conference of the Web
Society, October 1996.

Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollics. Al-
gorithms for drawing graphs: an annotated bibliography. Computational Geometry:
Theory and Applications, 1994.

Tim Bray. Measuring the web. In Proceedings of Fifth International World Wide Web
conference, pages 993-1005, May 1996.

Steve Benford, Ian Taylor, David Brailsford, Boriana Koleva, Mike Craven, Mike
Fraser, Gail Reynard, and Chris Greenhalgh. Three dimensional visualization of
the World Wide Web. ACM Computing Surveys, 31(4es), December 1999.

Jeromy Carriere and Rick Kazman. Interacting with huge hierarchies: Beyond cone
trees, 1995.

Stuart K. Card, George G. Robertson, and William York. The WebBook and the
Web Forager: An information workspace for the World-Wide Web. In Proceedings
of ACM SIGCHI '96, April 1996.

David G. Durand and Paul Kahn. Mapa: A system for inducing and visualizing
hierarchy in websites. In Proceedings of ACM Hypertext '98, pages 66-78, June 1998.

Peter Doemel. Webmap — a graphical hypertext navigation tool. In Proceedings of
the Second International World-Wide Web Conference, 1994.

Andrew Fountain, Wendy Hall, and Ian Heath. Microcosm: An open model for
hypermedia with dynamic linking. Technical report, University of Southampton,
1990.

Emmanuel Frécon and Gareth Smith. Webpath - a three-dimensional web history.
In Proceedings of IEEE Symposium on Information Visualization (InfoVis '98), pages 3—
10, 1998.

Robert J. Hendley, Nicholas S. Drew, Andrew Wood, and Russel Beale. Narcissus:
Visualizing information. In Proceedings of the 1995 Information Visualization Sympo-
sium, pages 90-96, 1995.

Ivan Herman, Guy Melancon, and M. Scott Marshall. Graph visualization and nav-
igation in information visualization. IEEE Transactions on Visualization and Computer
Graphics, Vol. 6, 2000.

65

http://jgraph.sourceforge.net/paper.html

Bibliography

[LR94]

[LRP95]

[RMC91]

[SB92]

[SBG+97]

[SENOO]

[SM97]

[Win99]

John Lamping and Ramana Rao. Laying out and visualizing large trees using a
hyperbolic space. In Proceedings of the ACM Symposium on User Interface Software
and Technology, pages 13-14, 1994.

John Lamping, Ramana Rao, and Peter Pirolli. A focus+context technique based
on hyperbolic geometry for visualizing large hierarchies. In Proceedings of the ACM
SIGCHI Conference on Human Factors in Computing Systems, 1995.

George G. Robertson, Jock D. Mackinlay, and Stuart K. Card. Cone trees: animated
3d visualizations of hierarchical information. In Human Factors in Computing Sys-
tems Conference Proceedings on Reaching through Technology, pages 189 — 194, 1991.

Manojit Sarkar and Marc H. Brown. Graphical fisheye views of graphs. In Confer-
ence Proceedings on Human Factors in Computing Systems, pages 83 — 91, 1992.

David Snowdon, Steven D. Bendford, Chris M. Greenhalgh, Rob Ingram, Chris C.
Brown, Lennhart Fahlen, and Marten Stenius. A 3d collaborative virtual environ-
ment for web browsing. In Virtual Reality Universe ‘07, April 1997.

Beat Signer, Antonia Erni, and Moira C. Norrie. A personal assistant for web
database caching. In Proceedings of the 12th Conference on Advanced Information Sys-
tems Engineering (CAiSE’00), June 2000.

Hidekazu Shoizawa and Yutaka Matsushita. Www visualization giving meanings
to interactive manipulations. In Advances in Human Factors/Ergonomics 21B (HCI
International '97), pages 791-794, August 1997.

David Winer. XML-RPC specification. http://www.xmlrpc.com/spec, 1999.

66

http://www.xmlrpc.com/spec

List of Tables

6.1 Type Identifiers for the Data Interchange Protocol 31
6.2 Collection identifiers for the Data Interchange Protocol 32
6.3 Attributes of the Document Data Structure 32
6.4 Attributes of the Link Data Structure 32
6.5 Parameters of the getGraph Method 33
6.6 Parameters of the search Method 33
6.7 Parameters of the addLink Method 34
6.8 Parameters of the deleteLink Method 34
6.9 Parameters of the rateLink Method 34
6.10 Values for the Rating Parameter of the rateLink Method 34

67

List of Tables List of Tables

68

List of Figures

1.1
1.2

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2
3.3

4.1
4.2
43
44
4.5

5.1
52
53
54
5.5
5.6

7.1
7.2
7.3
74

Interlinked Objects 2
Visualization of Documentsand Links 3
Graph Representation with Geometrical Abstraction 6
Two-dimensional Tree Visualizations 7
ConeTree. 8
ZoomandPan L 9
FishEye View 10
HyperbolicTree 11
Webmap e 15
WebBrain 16
StarTree e 17
Graph Element Extensions, 20
Graph Extensions L 21
Class Diagram for Layout Algorithms 22
Spanning Tree Layout Example 22
Helper Points for the QuadraticCurves 23
Overall Architecture 25
Architecture of the TrailGuide Application 26
Class Diagram for Web Document Extensions 26
Class Diagram for the Graphical User Interface 27
Class Diagram for the TrailGraph Applet 28
HTML Code for the Embedding of the TrailGuide Applet 29
TrailGuide Window L 35
Document and Link Tooltips 36
SearchforaDocument 36
Double-Click on a Graph Document 37

69

List of Figures List of Figures

75 Addalink 38
7.6 Move Link into another Collection 38
77 RatingLinks 39

70

Index

Access Pattern, 4

Applet, 25, 28, 35, 42
API, 25,27,42
Parameter, 28, 42

Artificial Intelligence, 11

Balloon View, 8, 22
Bibliography, 3, 4
Breadth-First Search, 23
Browser History, 2, 4, 17

Caching, 4
Classification, 11
Clustering, 3, 5, 10-13
Cone Tree, 8
Connectivity, 14

Data Interchange Protocol, 25
Database, 1, 4, 42

Distortion, 10

Document View, 2, 4

Factory Pattern, 20
Fanout, 5

Fish Eye View, 10, 12, 22
Focus+Context, 10, 12
Fogging, 13,17, 42

Force Optimization, 8, 13

Generic Visualization Framework, 25, 28, 41
Geometrical Abstraction, 5
Google, 36, 39
Graph Editor, 19
Graph Layout Algorithm, 8, 11, 14, 15, 21,
41
absolute, 21
animated, 42
incremental, 22
Graph Representation, 5, 14, 15
Graph Visualization, 3-5, 13, 16, 19, 21, 35,
41, 42
Graphical User Interface, 21, 25, 27, 35
Graphpad, 19
GraphServer, 42
GUI, see Graphical User Interface

71

H-Tree, 8

HTTP, 4, 31

Hyperbolic Tree, 10, 12, 14, 16
Hypertext, 1, 2, 4

Hypertext System, 13, 14, 41
HyperVIS, 13

Icon, 2

Information Retrieval, 11
Information Space, 24, 12, 41
Intelligent Caching Proxy, 4, 25, 42
Interlinked Objects, 1, 2, 4, 19, 41

Java, 25, 28, 35
JGraph, 19, 21, 23

Knowledge Transfer, 1, 3, 4, 41

Landscape, 6, 11
Lens Effect, 10

Map, 6,11

MAPA, 14
Microcosm, 1
MIME Type, 32, 35
Mosaic, 14

Narcissus, 13
Natto, 13
Navigation, 3, 41

OMS, 42
Open Text Web Index, 14

Path
authored, see Tour
deterministic, 2
implicit, see Trail
non-deterministic, 2
PersonalBrain, 15
Prefetching, 4
Proximity Function, 11

Query, 1, 4

Radial View, 8
Remote Procedure Call, 31

Index

Index

Rooted Tree, 14
RPC, see Remote Procedure Call

Search Engine, 3, 4
Spanning Tree, 14, 22, 23
Star Tree, 16

Swing, 19, 21, 23, 25, 27, 42

Tour, 24
Trail, 2, 4

Virtual Reality, 5, 11, 14

Visualization, 1-4, 13, 17, 19, 41
interactive, 8
three-dimensional, 8, 11, 13, 41
two-dimensional, 7, 8, 11, 41

Web Browser, 1, 2,4, 14, 42
Web Forager, 14

WebBook, 14

WebBrain, 15

Webmap, 14, 17

WebPath, 13, 17

World Wide Web, 1-4
WWW, see World Wide Web
WWW3D, 13

XML, 31
XML-RPC, 31, 42

Zoom and Pan, 9

72

	Title Page
	Acknowledgments
	Abstract
	Contents
	Introduction
	Interlinked Objects
	Visualization
	Knowledge Transfer
	Visualization of Tours and Trails

	Graph Visualization
	Graph Representation
	Geometrical Abstraction
	Virtual Reality
	Landscapes and Maps

	Graph Layout Algorithms
	Two-Dimensional Trees
	Three-Dimensional Trees
	Force Optimization Algorithms

	Optimizations for Large Graphs
	Zoom and Pan
	Focus+Context
	Fish Eye View
	Hyperbolic Trees
	Clustering

	Conclusions

	Hypertext Systems
	Overview
	Case Studies
	Webmap
	WebBrain/PersonalBrain
	Star Tree

	Conclusions

	Generic Visualization Framework
	JGraph
	Model Classes
	Graph Elements
	Graph Model

	Layout Algorithms
	SpanningTreeLayout
	LinkSplitLayout

	Integrating the Component
	Extending the Framework
	Adding Document Types
	Adding Layout Algorithms

	TrailGuide
	Architecture
	Web Document Extension
	Graphical User Interface
	TrailGuide Applet

	Data Interchange Protocol
	Data Structures and Special Values
	Type Identifiers
	Collection Identifiers
	Document Data Structure
	Link Data Structure

	Methods
	getGraph
	search
	addLink
	deleteLink
	rateLink

	User Guide
	Graphical User Interface
	Functionality
	Search for a Document
	Browsing
	Add Link
	Move Link
	Rate Link
	Delete Link

	Summary and Outlook
	Assignment
	Installation Guide
	Compiling
	Installation
	Running the Application

	Data Interchange Protocol Examples
	getGraph
	search
	addLink
	deleteLink
	rateLink

	API Documentation
	ch.etc.trailguide
	ch.etc.trailguide.backend
	ch.etc.trailguide.framework
	ch.etc.trailguide.gui
	ch.etc.trailguide.layout
	ch.etc.trailguide.web

	Bibliography
	List of Tables
	List of Figures

