
Diploma Thesis

iServerP2P

Distributed iServer Architecture Based
on Peer-to-Peer Concepts

Christian Heinzer, D-INFK
heinzerc@student.ethz.ch

February 26th 2004

Institute of Information Systems

Swiss Federal Institute of Technology (ETHZ)

Diploma Professor:

Prof. Moira C. Norrie

Supervisor:

Beat Signer

Abstract

The Integration Server is a framework that provides management of
links amongst mixed-media content. Plug-ins allow to integrate any
type of media. This work extends the existing architecture with the
possiblity to exchange link data in a decentralised fashion with other
Integration Server instances. To achieve this, the JXTA Java peer-
to-peer framework is used. The data is exchanged in XML format.
Plug-ins implement the transformation from the media referenced by a
link to its XML representation and reverse. Desired links are searched
by broadcasting queries, the arriving answers are small, specifying all
matching links. Those matches are rated and in a second step the best
links can be requested. As user management is an important part of
Integration Server, a basic update of user data over peer-to-peer is
implemented.

Contents

1 Introduction 1

2 Peer-to-Peer 3
2.1 Definition . 3
2.2 Architectures . 3
2.3 Bootstrap Problem . 4
2.4 Application Range . 5
2.5 Example Applications . 6

2.5.1 P2P Telephony: Speakfreely 6
2.5.2 P2P Radio: Streamer 8
2.5.3 Pure P2P search: Gnutella 8

2.6 iServerP2P Requirements . 9

3 JXTA 11
3.1 Technical Terms . 11
3.2 History and Principles . 13
3.3 Available Extensions and Applications 13
3.4 Comparison of Gnutella and JXTA 14
3.5 Protocol Stack . 15

4 JXTA in use 17
4.1 Groups . 17
4.2 Resolver . 18
4.3 Pipe . 19

5 User Management 21

6 Link Exchange 25
6.1 Queries . 25
6.2 Hash Identification . 26
6.3 Resolver: Query ID . 27
6.4 Pipe Request . 28
6.5 Synchronization . 28

7 Link Rating 29
7.1 Link Rater Examples . 31

8 Serialization and Materialization 33
8.1 OM Types . 33
8.2 Methods for Users . 35

8.3 Link Specific Issues . 37
8.4 Transient and Persistent Objects 38
8.5 Plug-ins Explained . 39

9 Manual for Users and Developers 41
9.1 Configuration . 41
9.2 Startup . 41
9.3 Queries and Responses . 42
9.4 Basic Example . 42
9.5 Application Integration . 42
9.6 Troubleshooting . 42

9.6.1 JXTA Startup Problems 43
9.6.2 java.io.IOException: Negative Seek Offset 43
9.6.3 OutputPipeListener . 43

10 Outlook and Alternatives 45
10.1 JXTA 2.2 + . 45
10.2 Services . 45
10.3 Pipes . 45
10.4 Link Identification . 45
10.5 Link Rating . 46

11 Personal conclusion 49

Acknowledgments 50

References 51

A Task Description 53

B API Reference 54

1 INTRODUCTION 1

1 Introduction

The Integration Server [ISERVER, url] supports the management of link data
(general association concept between arbitrary types of media) and its storage
in a database.

The current implementation is based on OMSJava [OMSJAVA, url], an
implementation of the OM model [NORRIE, 93].

There exists an iServer application (Paper++ plug-in) that offers prede-
fined data types and structures. As part of the Paper++ project, a tool to
simplify authoring of link data has been developed. [NORRIE, 03]

The goal of this thesis is to extend the existing iServer framework with
decentralised access to other users’ link data so that link knowledge can easily
be shared.

We do not want to rely on a central server for organisation of commu-
nication or even data storage for reasons like scalability, speed, flexibility,
administrative and hardware costs or breakdown security.
The resulting extension is called iServerP2P for short.
iServerP2P challenges and functionality include:

• User discovery
The word ‘user’ is ambiguous: It does not only denote a person running
iServerP2P but within iServer there exists a user management part
built around the abstract OM type user. The concrete occurrences of
this type are either indivuduals or groups, we will preferentially use
these terms to avoid confusion.

– Instances of iServerP2P
A precondition for communication with others is knowledge of who
is available. This discovery does not have to be complete in a way
that every one running the program knows every other directly,
but it should provide the possiblility to reach a sensible amount
of other users.

– OM Objects Individuals and Groups
It would be nice if the individuals or groups known to different
iServer users could be synchronised/updated automatically.

• Communication
The technical challenge how to exchange messages and data between
the instances of distributed iServer program.

• Link exchange
The main task can be subdivided into different parts including:

1 INTRODUCTION 2

Marshalling: Serialization and Materialization
For transfer the links have to be serialized and at their destination it
must be possible to rebuild, i.e. deserialize/materialize, the underlying
OM Objects.

Query concept
Normally a user does not want to demand simply all links that other
iServer instances know of but based on certain properties he wants to
request specific links.

Quality: rating of received links
As a query can be fairly broad (e.g. we could simply request all links
available) and even a precise query can return numerous responses (if
the matching links are present in the local database of most users) the
ability to identify duplicates and in general a mechanism to measure
the quality of matching links should be offered.

The original task description can be found in Appendix 1.

Overview This report starts with a general review of peer-to-peer tech-
nology. Some sample applications are considered in detail. The next chapter
describes the JXTA Framework. Which parts of the JXTA Java implemen-
tation are used and in which form is explained in chapter 4. Chapters 5
and 6 introduce the protocols and ideas used for user management and link
exchange. Plug-in infrastructure for rating link information is introduced
in the chapter 7 including several concrete examples. The central aspects
concerning marshalling of user and link data are described in chapter 8. In
chapter 9 the small test program used to present the functionality is shown
and additionally the manual for users of iServerP2P is included. Chapter 10
gives an overview of possible alternatives and improvements. Finally, chapter
11 contains personal conclusions about this diploma project.

2 PEER-TO-PEER 3

2 Peer-to-Peer

2.1 Definition

Peer-to-Peer (P2P) is a broad emerging topic and there does not exist a
single correct definition about what makes an application or technique P2P.
For practical purposes the most commonly used definitions are open ones
like:

any application or process that uses a distributed architecture
and allows peers to provide and consume resources [OVUM, 02]

In this definition a peer is a networked device that implements one or more
P2P protocols (like JXTA). A peer can be unreliable (e.g. by having tempo-
rary connectivity and addresses) and it can act autonomously to any extent.

Note that the previous definition does not imply that the architecture
is completely serverless nor that there exists a direct communication path
between the peers.

The conclusion that can be drawn from this definition and our goals is,
that we want to extend the iServer architecture with a P2P component.

2.2 Architectures

(a) pure P2P (b) hybrid (c) super peer

Figure 1: P2P architectures

The pure P2P architecture shown in Fig. 1(a) is completely serverless.
All peers are equal and the connectivity can be highly mutable.

A hybrid architecture like the one shown in Fig. 1(b) relies on one or more
central instances. Even if none of the single peers is connected directly to

2 PEER-TO-PEER 4

another peer, the application does not have to use a conventional client-server
architecture but still can use P2P principles (see section 2.4).

An architecture using super peers as presented in Fig. 1(c) tries to unify
the advantages of both, the hybrid and the pure architecture. The decision
if a peer acts as super peer can possibly be taken dynamically based on
reliability or available bandwidth. This super peer approach does not rely
on fixed servers. Nevertheless, some of the peers play a more important role
and therefore communication between non super peers can be minimised.

2.3 Bootstrap Problem

The bootstrap problem, a central point common to all P2P systems, deals
with the question how a node (peer) joins the P2P network at startup time.
Especially in case of a pure P2P architecture this proves to be a difficult
problem since per definition there is no central server instance. Different
strategies are used in current P2P implementations but they all have either
specific requirements or introduce a central instance through the back-door:

• Broadcast
If the underlying transport protocol supports a kind of broadcast (e.g.
IP multicast) we can send out a broadcast query for other peers and
the problem is solved if at least one other peer within the range of the
broadcast is running and is connected to the P2P net.

• Fixed IP addresses
Most P2P application use a list of IPs of computers that are known to
run the software. This list can be hard-coded into the program or be
mutable such that users can update it.

• Webpage to retrieve/register IPs
A similar idea is to set up a dedicated site (webpage) where users can
register their IP when they start up the program and where they can
find IPs of other users for bootstraping. This register and lock-up can
be done automatically.

• Local cache
If in the past a peer has already been connected successfully to the
network, we can rely on some of the peers used in a previous session
still being available.

The bootstrap problem is discussed in [BOOTSTRAP, url] (Wiki page)
and the conclusion is that no pure P2P system can be built reasonable on
top of today’s internet.

2 PEER-TO-PEER 5

2.4 Application Range

There is a huge amount of P2P software available in different fields. Some
examples are:

Distributed Computing

Realtime Communications (IM)

File Sharing

Groupware

Table 1: P2P applications

Distributed Computing
Several interconnected computers share computing tasks assigned to the

system. The most popular example in this area is SETI@home. As this
program works fully centralised — a server hands out computing tasks to
connected peers — it represent a restricted version of P2P where there does
not exist direct communication between the peers. Nevertheless, the server
distributes jobs based on the work other peers have done resulting in a very
basic distributed architecture.

Realtime Communication and Instant Messaging
Enables online users — people or applications — to communicate “imme-

diately” i.e. with minimal delay. A representative of realtime communication
is Jabber, where each client is connected to at least one server. The most in-
teresting distributed componont lies within the relationship between Jabber

2 PEER-TO-PEER 6

servers: Every Jabber server is a peer to every other Jabber server. Because
of its two-tiered hierarchy this can be one of the few P2P applications where
the nodes (Jabber servers) operate inside the Domain Name System (DNS)
and use DNS records to locate each other — but the communication between
the server and the client does not rely on DNS. (see section 2.5.1 for more
information about DNS)

File sharing
Filesharing is the prevalent usage of P2P and there exist many systems

with different advantages and properties.
Napster for example uses the hybrid architecture shown in Fig. 1(b). All

searches for files run over a central server but the payload, the file content,
is transmitted over a direct connection between the peers. The advantage of
this approach is that it separates the search process which needs relatively
low bandwidth but is difficult to implement in a distributed way from content
exchange that can easily use a direct connection.

BitTorrent is optimised for speed. It does not allow to search for content
but for each file there is a central instance (tracker) that has to be known
and that manages up and downloads for all users connected at a time. This
priciple limits the amount of available files to those hosted actively at a
time but it involves only a small protocol overhead and fairness can be easily
implemented as the tracker has full control over who transmits where at what
bandwidth.

Freenet enables anonymous content distribution. It is not mainly a file
sharing system but arbitrary content (i.e. HTML pages) can be stored and
be retrieved by anybody who knows its indentifier.

Groupware
Software that tries to integrate all of the above functionalities within a

consistent and productive environment.

2.5 Example Applications

This section presents enlightening examples that show specific problems and
properties of P2P applications.

2.5.1 P2P Telephony: Speakfreely

P2P Telephony applications take the word peer-to-peer literally: Every peer
can contact every other. The distributed architecture that makes this possi-
ble can be very simple as in the example of speakfreely [SPEAKFREE, url].

2 PEER-TO-PEER 7

This application uses a single central ‘Look Who’s Listening’ facility, a direc-
tory entry on a server that matches an e-mail address, a permanent resource
to identify a user, to an IP address. Once a speakfreely user has registered
it IP and e-mail addresses it can be found and contacted by any other user.
Each time a user changes IP address the entry on the server has to be up-
dated.

Speakfreely has its roots already in 1991. Today it supports the Internet
Real-Time Transport Protocol that runs on top of UDP/IP. Further features
of speakfreely are GSM compression that allows real-time audio with a band-
with of only 1650 bytes/s and support for strong encryption. Several security
issues have been identified, multiple buffer overflows permit attackers to gain
system access in version 7.x.

The example of Speakfreely shows a simple method how DNS can be
bypassed. DNS based approaches are impractical in todays P2P systems as
changes in the translation between domain names and IP addresses take a
long time to propagate. In the advent of the internet, when a permanent IP
address was standard for internet users, this did not affect reachability and in
the future, if IPv6 becomes widely accepted, this problem should disappear.
But today it is impossible to associate one peer fix with one IP address.
Therefore, in general, P2P systems can not rely on DNS because access-
ing decentralized resources means operating in an environment of unstable
connectivity and unpredictable IP addresses [SHIRKY, 00].

On January 15th, 2004 Speak Freely development and support was
discontinued by its original author, John Walker. On the webpage an End of

Life Announcement can be found and in the paper The Digital Imprimatur.

How big brother and big media can put the Internet genie back in the bottle.

[WALKER, 02] various P2P related problems are addressed. A pessimistic
developement is predicted in a strongly biased way.

P2P limitations and problems The most serious technical limitation is
the increasing usage of firewalls and Network Address Translation (NAT),
limiting reachability of peers shielded in that way. In addition recent broad-
band offers with asymmetric down- and upload bandwith limit the speed and
slow down P2P applications.

Other problems that prevent the spread of P2P are factors like knowl-
edge of users and limited availability of user friendly software. Security con-
cerns as potential bugs in P2P software can be exploited with serious con-
sequences. Legal doubts because copyright violations are common and can

2 PEER-TO-PEER 8

not be prevented effectively by application developers. And finally compa-
nies and governments that not always support a community where everyone
has the possibility to publish information and opinions with small effort and
little or no money.

2.5.2 P2P Radio: Streamer

The basic idea of P2P radio is that every listener relays the music stream on
to more listeners. In this scenario the broadcast server only needs to send the
stream to few listeners in order to support an unlimited amount of listeners.

Streamer uses a webpage with a station list for finding stations. Addi-
tionally every peer submits random requests to known peers for further peers
and station information. The network of all peers listening one program can
be viewed as a tree where the connections are dynamically shuffled around
in order to bring the higher bandwith and more reliable, i.e. having a longer
uptime, relays closer to the broadcast source to act as a backbone. The low
bandwith users migrate to the outer edges of the tree. A further optimisation
is that feeds from inside the same Local Area Network are prefered.

P2P key advantages The example P2P Radio shows well the true power
of a peer-to-peer architecture — scalability and flexibility.

2.5.3 Pure P2P search: Gnutella

Gnutella is a protocol for distributed search based on a pure P2P architecture.
It is designed mainly for filesharing.

We do not consider a specific applications that implements the Gnutella
protocol but the principles and ideas behind as stated in [GNUTELLA, url].
Gnutella is an example for a fully distributed architecture using simple and
very basic principles. Every peer connects to relatively few others and queries
are broadcasted over many indirections. This implies that such systems do
not scale very well. Speed is low since a single query can potentially trigger
messages for every connected peer.

For filesharing there exist improvements that scale better for a large
amount of peers and frequent query broadcasts. An example is Gridella
[SCHMIDT, 02], a Gnutella compatible application based on the P-Grid ap-
proach. P-Grid is a virtual search tree which is distributed among a com-
munity of peers. Randomized algorithms are used for access and search of
information. All such improvements assume that the data that is available
over P2P can be distributed freely over the peers. Under this restriction it

2 PEER-TO-PEER 9

is possible to optimise the data distribution and to locate data without the
need to ask every peer.

2.6 iServerP2P Requirements

In order to take the decision for one of the many P2P platforms and libraries
we had to compare their features with what is needed to accomplish our goals
in the most efficient way.
We need:

• User (other peers) discovery, which has to be decentral, self-controlled
but not necessarily complete

• A way to send messages (queries) to all or many peers and get responses
back

Nice would be:

• An existing Java implementation — as iServer is Java based — that
should be opensource or at least freeware and preferably stable and
tested faithfully

• The ability to exchange payload (links, user data) over the platform.
That mechanism does not necessarily have to be integrated into the
P2P part but could also be implemented using a direct connection (i.e.
only IP distributed over P2P, data could get demanded later in the
convential way)

We do not need:

• An advanced key based data sharing/storage system 1

Such techniques are based on the concept of distributing the data in
an optimal way over all peers and then using sophisticated algorithms
to locate this data without being forced to ask all peers. But we need
the advantages of the simpler broadcast approach:

1. Keep control over data distribution and redundancy: Every peer
distributes only the data its user has deliberately integrated into
his DB or even created himself. A query for certain data should
reach a maximal (optimally all) amount of peers, and we can profit
of the redundancy in the responses as important results should be
contained in the DBs of many iServerP2P users and are likely to
show at least once or even multiple times in the responses.

1sometimes called 2nd or 3rd generation P2P

2 PEER-TO-PEER 10

2. Real search not only identification: We want to be able to prop-
erly search for arbitrary content (flexible queries) and not only to
locate data based on a single property or even an unique identifier.

The next chapters show that JXTA meets all those key requirements.

3 JXTA 11

3 JXTA

3.1 Technical Terms

To understand the language used to describe JXTA properties, processes
and protocols a base vocabulary is required. The terms explained here are
ordered by complexity starting with the most basic ones.
The thightly linked protocols are introduced in section 3.5.

• Identifier
A peer group could potentially be as large as the entire connected uni-
verse. Naming anything uniquely is a challenge in such a large names-
pace. In order to cope with this, JXTA assigns an internal identifier
to every addressable instance of a JXTA component. JXTA identi-
fiers are in URN (Uniform Resource Name) format and embedded into
advertisements for internal use.

When JXTA IDs are used within protocols they are manipulated as text
String URIs (Uniform Resource Identifier). In the Java reference im-
plementation of JXTA, identification is accomplished via UUID Fields,
64-byte Strings containing numbers generated using an algorithm that
ensures a high probability of uniqueness in both time and space.

• Peer
A peer is any entity that implements the required peer protocols (JXTA
core protocols). Peers are connected dynamically to other peers via
pipes. There exists two kinds of super peers in JXTA:

Relay Peer
Maintains information on routes to other peers, and helps relay mes-
sages to peers — e.g. for firewall traversal. Note that the relay peer
has ben referred to as router peer in previous JXTA versions.

Rendezvous Peer
A rendezvous peer maintains a cache of advertisements and forwards
discovery requests to other rendezvous peers to help peers discover
resources.

Every peer in the context of a group is either a rendezvous peer or
not (edge peer). In the default configuration, peers get promoted to
rendezvous automatically based on criteria as connection speed, uptime
or the number of other rendezvous peer in the group. (see rendezvous
protocol in section 3.5)

3 JXTA 12

• Peer Group
A peer group is a collection of peers. Note that there is no concept as
to why peers are grouped or how. There is also a World Peer Group

including all visible JXTA peers. Groups can be nested. (see section
4.1)

• Peer Endpoint
A peer endpoint is an URI (Uniform Resource Identifier) that uniquely
identifies a peer’s network interface (e.g. a TCP port with an associated
IP address).

• Advertisement
An advertisement is an XML document that names, describes, and
publishes the existence of a peer, a peer group, a pipe, or a service.

• Message
All information transmitted between endpoints, using pipes for exam-
ple, is packaged as messages. The JXTA protocols are specified as a set
of XML messages exchanged between peers. A message consists of a
stack of protocol headers with bodies where the protocol body contains
a variable number of bytes and one or more credentials used to identify
the sender of a message.

• Pipe
A pipe is an uni-directional, asynchronous communication channel for
sending and receiving messages. Pipes are also virtual, in that a pipe’s
endpoint can be bound dynamically to one or more peer endpoints at
runtime. The receiving end of a pipe is referred to as input pipe, the
sending end as output pipe. (see Pipe Binding Protocol in section 3.5
and 4.3)

3 JXTA 13

3.2 History and Principles

JXTA is a set of open, generalized XML P2P protocols that allow any con-
nected device on the network to communicate and collaborate. It started as
a research project incubated at Sun Microsystems, Inc. under the guidance
of Bill Joy and Mike Clary.

Project JXTA is short for Juxtapose, as in side by side. It is
a recognition that peer to peer is juxtapose to client server or
web-based computing — what is considered today’s traditional
computing model. [JXTAa, url]

Since February 2001 it is open source and its license is based on the
Apache Software License.

Aspects such as discovery of peers, advertising presence, penetrating fire-
walls, and transferring data, which are common to all peer-to-peer appli-
cations, are handled by a set of standard libraries that are available to a
JXTA application. JXTA allows a virtual network without a central naming
or adressing authority. Every peer has a unique ID that is abstract from
concrete endpoints or even transport protocols.

As JXTA uses XML as a message and advertisement format it is com-
pletely interoperable. Thanks to the simplicity and universal accessibility of
XML technologies, software can be created on almost any platform to gen-
erate and parse JXTA messages. Several implementations are available, the
version used for this project is the Java 2 SE reference implementation 2.1.1.
(Version 2.2 was released 15.12.2003.)

3.3 Available Extensions and Applications

The development of JXTA is very active and new versions, extensions and
applications appear quite frequently. We can distinguish bewteen the JXTA
core, JXTA services (comparable to plug-ins in a browser) and specific JXTA
applications such as iServerP2P. Some examples are listed below, many more
or specific details can be found on the projects page [JXTAa, url].

JXTA services: These are extensions to the JXTA base functionality.
Some of these extensions might be integrated in future releases.

• jxta-grid: Using JXTA technology for grid computing

• jngi: P2P Distributed Computing Framework

• gisp: Global Information Sharing Protocol (DHT)

• search: Distributed search service for JXTA

3 JXTA 14

JXTA applications: There are not many complete applications. However,
there exists a handful of commercial software based on JXTA.

• radiojxta: delivering audio content over JXTA networks

• go: A Go tournament based on the JXTA Protocols

JXTA abstractions: There exists also several approaches aiming for mak-
ing programming easier. As they are all still in an early development stage
and pose severe restrictions upon flexibility of usage we could not use them
directly for iServerP2P but it was worth taking a look at how they implement
certain tasks to have some guidelines.

• JAL: JXTA Abstraction Layer as part of EZEL (Easy Entry Library
for JXTA)

• p2psockets: abstraction useful especially for developers new to P2P
and being used to the conventional client-server model

3.4 Comparison of Gnutella and JXTA

Gnutella means here the underlying principles and ideas as explained in sec-
tion 2.5.3. For iServerP2P we would need to put up a separate special purpose
network because we are not interested in general file sharing. Table 2 gives
a keyword based overview of the most important differences.

Gnutella JXTA

small huge and extensible
mainly plain file sharing everything
unstable attention on security
protocol only Java reference implementation
single firewall communication possible if both peers are
traversal supported behind different firewalls
small mostly fix size XML as message format
messages (internal and payload)
payload externally pipe abstraction for data of arbitrary size
separate networks for different groups concept
application fields

Table 2: Gnutella vs. JXTA

3 JXTA 15

3.5 Protocol Stack

A considerable amount of naming and arrangement has been changed since
JXTA version 1 and will probably evolve further in future versions. For
example, the whole discrimination between core and standard is new. Earlier
specifications considered all protocols as equal and a peer just needed to
implement the protocols it required.

Project JXTA is a set of XML protocols which will be discussed in this
section. Some details as how the protocols are implemented and use each
other depend on the particular JXTA implementation. All our explanations
are based on the Java reference implementation.

Figure 2: JXTA protocols

Core protocols

The JXTA core protocols are implemented by all JXTA peers. These two
protocols and the advertisements, services and definitions they depend upon
are known as the JXTA Core Specification and they establish the base in-
frastructure for P2P communication.

Endpoint Routing Protocol (ERP)/Peer Endpoint Protocol: ERP
is used to ask a peer router for routes (sequence of hops) to a destination
peer. Peer routers respond to queries with available route information. Any
peer can decide to become a peer router by implementing the Peer Endpoint
Protocol.

Peer Resolver Protocol (PRP): Peer Resolver is a generic protocol for
queries to search for information or to search for peers and other JXTA
items. The PRP permits the dissemination of generic queries to one or more

3 JXTA 16

handlers within the group and to match them with responses. Each query
is addressed to a specific handler name. A given query may be received by
any number of peers in the group, possibly all, and processed according to
the handler name if such a handler name is defined on that peer. A concrete
example of usage is given in section 4.2.

Standard protocols

The JXTA Standard Services protocols are optional JXTA protocols and
behaviours.

Rendezvous Protocol (RVP): RVP is the protocol by which peers can
subscribe to or be a subscriber of a propagation service for messsages. Within
a peergroup, peers can be rendezvous peers or they connect dynamically to
rendezvous peers for message propagation. RVP allows messages to be sent to
all of the listeners of the service. RVP is used by the Peer Resolver Protocol
in order to propagate messages (see section 4.2 for consequences).

Peer Discovery protocol: Peer Discovery protocol is used to publish and
discover, via advertisements, peers, peer groups, and any other advertise-
ments.

Pipe Binding Protocol: Pipe Binding Protocol is used to bind a pipe
advertisement to a pipe endpoint. Pipes are like abstract, named message
queues supporting operations such as create, open, close, delete, send, and
receive. The binding happens at the open operation and during close the
endpoint is unbound.

Peer Information Protocol: Peer Information Protocol is used to learn
about other peers’ capabilities and status. This includes a ping and a
name/value property access. This Protocol is not important for our ap-
plication and the only one we surely can ignore.

4 JXTA IN USE 17

4 JXTA in use

This chapter provides a detailed explanation of the important aspects of
JXTA used in iServerP2P including some implementation details.

4.1 Groups

The iServerP2P application aims to exchange very specific information (it is
not a generic filesharing or chat application). Therefore it makes sense to let
this communication happen in a dedicated, newly created peer group.

We could once create a new group, named recognisable, say iServerP2P,
for our application and from then on at startup of each new peer search on the
JXTA net for a group advertisement of this name — we would find it if the
advertisement still existed in the cache of a reachable peer. If we let always at
least one peer connected, we could even guarantee (presumed the net is not
split or completely down) that the group advertisement can be found. But
if we ever wanted to update or completely change communication protocols
then this approach would make it difficult to reuse the name iServerP2P. We
would have to make sure not a single peer using the old version connects
to our group any more. Additionally, we do not even want to publish our
group so that it can be found by every JXTA user. This would just attract
uninvited guests who could possible disturb our communication.

Our approach is based on a fixed group advertisement bundled with the
iServerP2P application (in the Group.adv file). The advantage is now that
each time a new version of iServerP2P is released that is not backwards
compatible, we can simply generate a new group advertisement once (under
the same name if we want) and then distribute this with our new iServerP2P.
Of course this results in two separate communities and users running one
version can no longer talk to users running a different one. In this case we
could even implement bridge peers that know other versions and join several
groups together.

A completely different and more elegant solution to this versioning prob-
lem is suggested in section 10.2.
Content of the group advertisement file:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE jxta:PGA>

<jxta:PGA xmlns:jxta="http://jxta.org">

<GID>

urn:jxta:uuid-D743D6515BA34CE5B300BB9B666928BF02

</GID>

4 JXTA IN USE 18

<MSID>

urn:jxta:uuid-DEADBEEFDEAFBABAFEEDBABE000000010306

</MSID>

<Name>

iServerP2P

</Name>

<Desc>

group adv for iServerP2P application

</Desc>

</jxta:PGA>

GID is the unique group identifier and MSID is the module specification ID
that identifies the implementation of this group (e.g. jxta version).

4.2 Resolver

The JXTA resolver is a simple query-and-response protocol working in prop-
agation mode. It is used internally by JXTA for discovery of advertisements.

The response to a resolver query takes the best path back to its source
(rather than broadcasting). This is possible because the originating peer
ID is included in the query message. The JXTA router discovers the best
route back and sends the message. As the resolver is a component at a fairly
low level, it is not very common to use it directly by an application. We
found a single working example [BROOKb, 02] that helped a lot even if it is
programmed for an older version of JXTA and several syntactical and some
semantical changes were necessary in order to use it with version 2.11. The
most important are:

1. processQuery

This callback method for a QueryHandler executes if a resolver query
arrives. Query propagation behaviour was controlled by different, more
complex means in older JXTA versions.
earlier: Throwing one of three exceptions determines if and how the
query is propagated. The possible exceptions are NoResponseException,
ResendQueryException and DiscardQueryException (for details see
[WILSON, 02], page 133).
latest: Returning an int constant is utilised now for this purpose: Ei-
ther OK success (corresponding to no exception in the older variant)
or Repropagate to indicate a re-propagation is needed i.e. that the
query should be forwarded to the rest of the network.

4 JXTA IN USE 19

2. Rendezvous Protocol
earlier: Resolver queries are propagated to every peer.
latest: Resolver queries are propagated only to rendezvous peers as
the resolver depends on the rendezvous protocol which was changed
dramatically.

The effect of the second change is, that edge peers, i.e. non rendezvous
peers, will only receive direct queries for their own advertisements. The idea
behind this change is, that edge peers publish indices of advertisements across
the rendezvous network using Distributed Hash Tables (DHT). DHTs are
maintained by rendezvous peers and queries are directed to the appropriate
rendezvous ([TRAVER, 03], page 4).

As we do not have application data that can be distributed freely over
the net (see section 2.6) we want to avoid this behaviour. Our workaround
is to configure every peer fixed as rendezvous within the iServerP2P group.
The only case where it would make sense for iServerP2P to use a peer with
edge peer behaviour would be when this peer has a very slow connection or
even no persistent data to be shared. In this case the peer should not receive
any general queries but it should still be able to submit queries itself.

4.3 Pipe

Pipes are the core (and often the only mentioned) mechanism for JXTA
peers to send messages to one each other. JXTA knows three types of pipes:
point-to-point pipes, propagate pipes and secure unicast pipes. All of those
default pipes are unidirectional and unreliable. In the Java implementation
there exists further bidirectional and bidirectional reliable pipes built on top
of the point-to-point pipe.

As visualised in Fig. 3 it is not obvious if several users can send messages
over the same pipe, i.e. over a pipe having the same advertisement. Most
literature (including the official project JXTA one) disregard this possibility
but they do not state explicitely that or why this should be impossible.
Discussions on the project’s mailing list and our own experiments argue for
the more flexible view where an arbitrary number of peers can bind an input
pipe belonging to the same pipe and send messages concurrently. iServerP2P
uses this feature heavily as we do not create new pipes for everyone we
want to communcitate with. In our design every user listens on exactly one
unidirectional point-to-point pipe and we can not predict by whom and at
what times messages will arrive through this pipe.

If point-to-point pipes should ever loose their many-to-one ability, we
could easily change to a policy where every peer creates a new pipe for every-

4 JXTA IN USE 20

Figure 3: JXTA pipes

(a) [LI, 01], page 51 (b) [SUN, 03], page 11

one wanting to contact it as we send the corresponding advertisement anyway
(over resolver communication or a pipe established earlier). In the current
implementation it is just the same pipe for anybody. But this would firstly
involve a large overhead and secondly it is unlikely to happen as many appli-
cations we have examined (including the chat application myJXTA, formerly
known as InstantP2P, that is bundled with the JXTA Java implementation)
depend on this feature.

5 USER MANAGEMENT 21

5 User Management

Figure 4: User synchronisation state diagram

ResolverSendQuery
¨ send Broadcast () with Date of own UserDataUMPing

ResolverProcessQuery
¨ Read Date from , compare to ownUMPing

ignore

UMPong

with (ReDate,Pipe)

old
er

newer

ResolverProcessResponse
¨ check if ReDate in is newer (else ignore Response)UMPong

start userTimerTask if not running yet

add (ReDate, Pipe) to offers

wait for more ResolverResponses

for best (=latest) in offers

PipeQuery (own listening Pipe)¨ sendUsers

PipeProcessResponse
¨ ®read out Date, if newer materialize UserXML

PipeProcessQuery
¨ to Pipe contained in sendUsers send (Date, UserXML)

UserXML: serialized UserData

synchro

The user management2 part of iServerP2P allows automated update of
the individuals or groups (user data). The basic ideas on how this update
works are the following:

• Users can never be deleted
Individuals or groups will persist forever once created, otherwise we
could not guarantee data integrity if during an update a creator of a
link only we have in the database gets deleted. Further, we prevent
trouble with automated update if somebody should put up a corrupt
or empty version of user data.

What we would like to have on the other hand is the ability to cancel
group membership for users. In the worst case mentioned above we

2user management is implemented as a proof of concept rather than with the goal to
be a sophisticated solution to the problem of distributed synchronisation and update

5 USER MANAGEMENT 22

could loose membership information if we were to update to a corrupted
version.

A potential problem of the impossiblity to delete users through auto-
update occurs if someone should ever put up a version of user data
containing a huge amount of fake data about individuals or groups.
After publishing a newer fixed version, each user that already integrated
those fake users would have to remove them manually.

• No incremental updates supported
If someone wants to update his user data he has to ask for the complete
list. Incremental updates affecting only users added after a certain date
or only the members of a specific group are not supported.

• Only complete lists should be released
Because of the distributed nature of the update process we can not
guarantee that every iServerP2P user catches every updated version.
Therefore, the latest version must always contain the complete list of
relevant individuals and groups with membership information. Only
administrators who can be sure to have this should put up a new version
for distribution. This does not mean that other users can not create new
individuals or groups in their local DB but they should not announce
them directly. Local changes to group membership are prohibited as
they could propagate to other users and at the time of the next auto-
update they would be lost anyway.

• Versioning by date
Each iServerP2P user knows how old the version of indivduals and
groups in his DB is. Updates are only accepted if they are newer than
the current version. Some plausibility checks3 have been implemented
but it is by far not invulnerable. The goal is, that every online user
should be updated to the latest version sooner or later. We should
definitely never “downgrade” by using an older version of user data.

Those principles are implemented in JXTA in the way shown in Fig. 4.
In order to easier understand the ideas, we can abstract from the content in
a first approximation and consider the user data just as an arbitrary binary
large object that has a version (date) and can be updated.

The presented communication in Fig. 5 happens in a client-server (enquirer-
responder) way with alternation at each step. The client is the peer that

3e.g. nobody can announce a version with a date years in the future, or at least it
would be ignored. Otherwise anybody could render this autoupdate completely useless by
distributing such a version.

5 USER MANAGEMENT 23

wants to update its user data and sends out a query. As a server we consider
a single other peer that receives this query.
The communication happens in two parts:

1. Resolver part
The client sends out a broadcast (propagate) query over the resolver.
The message is labelled UMPing and contains as a single element the
version of its current user data.

The server receives and processes this UMPing query, reads the version
element it contains and compares it to the up-to-dateness of his own
user data. If the server has a newer version then it responds with
a UMPong message that contains the version of its user data and the
advertisement of a pipe where it can be reached (by the client to asking
for the content).

2. Pipe part
If the client’s request is successful and anyone managing a newer version
has answered with an UMPong, it can now extract the pipe advertise-
ment contained in the resolver answer and send a user data request
to the responder (server) over this pipe. This request for user data is
named sendUsers and its only content is the advertisement of the pipe
where the client listens for answers.

Any sendUsers request that arrives over a pipe is answered by sending
the version of the user data and the user data itself as payload to the
pipe mentioned in the sendUsers request.

When the client finally receives such a date and userdata pair, it uses
the payload data after a check if the data is still wanted.

The part not explained above is the timer component at the interspace
between pipe and resolver communication. Here this is only an optimisation.
As the whole user data can become arbitrary large we do not request new
versions immediately but rather wait a certain time (collecting all offers that
arrive in the meantime) and then choose and request the best seen so far.
For link exchange as explained in the next chapter this timer is a central
component that enables reasonable ranking.

The current version/date of the user data is stored externally in the file config.xml

(see section 9.2). Alternatively this information could be stored within the iServer

database, e.g. in the preferences of an individual.

5 USER MANAGEMENT 24

Synchronization Figure 4 indicates that if we implement this design we
should keep in mind that execution is not linear but asynchronous.

For the first part this does not bother us. The only relevant data is the
date, which is only read in this part. So if we take care that we do never
offer a version newer than the one currently used by our iServer instance we
do not run into problems. This can be achieved by updating the DB always
before the date.

In the second part this is more difficult. If we are about to update our user
data by inserting new individuals, groups and mutate group membership our
DB could temporary be in an inconsistent state. If we read the data at the
same time to answer a sendUsers request we would pass on this inconsistent
version.

6 LINK EXCHANGE 25

6 Link Exchange

The ability to exchange link information with other iServerP2P users is the
main goal of this project. User management as illustrated in the previous
part was implemented first and in a way that requires minimal adaptions and
extensions for this task. The few differences are explained in this chapter.

6.1 Queries

A first major difference in the resolver part is that the ping request now
contains a specific query instead of the user data date. This query selects
links the client is interested in.

The very basic language we implemented chooses a selection method
based on the first three letters in the query string, the remainder is taken as
argument. The following possibilities are provided:

• nam... : selects links with a given name
Such queries make sense mainly for debug purposes.

• src... / tgt... : selects links having a specific entity as source / target
The entity is specified by stating its XML representation. The idea is
not to write such a query manually but the application should provide
the possibility to select an entity to apply the query to. The XML rep-
resentation can then be constructed by the serializer methods needed
for communication anyway (see chapter 8).

• aql... : selects links based on the the following AQL4 query

Because of the limitations in AQL support (and because complicated
AQL query expressions can get pretty long) we could easily hard-code spe-
cific queries into the iServerP2P application. An optimal approach would
probably be a dedicated iServer Link Query Language that would support
statements containing:

• Plug-in usage for queries over data types of iServer extensions such as
Paper++

• Fuzzy queries as drafted in section 10.5

4AQL: Algebraic Query Language, the OM query language
OMS Java only supports an early version of AQL and complex expressions (nest, map,
reduce, ...) are not implemented yet. Therefore, this possibility is not as powerful as we
wish but queries like ‘dom(HasTarget rr (Movies))’ which selects links pointing to movies
work.

6 LINK EXCHANGE 26

• Structural queries referencing to interlink structures (links can have
other links as source or target, a fact ignored in the current iServerP2P
version) such as rings or chains of a certain length

6.2 Hash Identification

The answer to a resolver query for links should contain all matching links.
Because of performance reasons (in an extreme case every connected peer
finds multiple matches) we can not respond directly by sending all the data.
Instead, the response is just a list of hash values, each identifying a link,
together with the link’s creator.5

A hash identifying a link is calculated using the standard Java hash func-
tion over the XML representation (as String) of the link. As the functionality
to serialize a link to XML is required anyway in order to implement link ex-
change this approach only posed minor additional effort. One thing we had
to consider here is to remove any unneccessary information (e.g. Object IDs)
from the XML representation as this would lead to different hash values for
the “same” links.

Tricky issues still exist: e.g. the layer a selector lies in should
be used for link exchange to have the possibility to rebuild the
selector. But if this layer does not exist in the receivers database
the selector should be assigned to a default layer with the result
that hash identification will fail and consider the two otherwise
identical links as different. A possible solution is proposed in
section 10.4.

The standard Java hash function for Strings is criticised because of its
relatively small hash range (32-bit integer values) and a bad distribution
of values for short Strings which are mapped to small numbers. In our
application small hash range should not be a problem as to a well considered
query there should be a match of only few different links. Otherwise, we
should probably pose a better, more specific, query. Based on the assumption
of a constant, small match count the possibility of a collision is so small it
can basically be ignored.

One could argue that if a typical user has a huge amount of links in his DB
and if we check through hash comparison if a certain link is already known,
then the hash range should be increased. Otherwise if we implemented this

5possible optimisation: ask for the creator of a link with a certain hash in an extra step
over a pipe.
The creator would not be included in probably many responses to a broadcasted query
but could be requested exactly once from a single peer knowing this link.

6 LINK EXCHANGE 27

duplicate-check (see section 7.1) in a clever way, we would apply the query
first to our own DB and then for the check we had to consider only the few
matching links instead of all in our DB.

The worst case arises if two different links map to the same hash value
and someone requesting a link over its hash gets a completely different one
that will not even meet the query constraints. Our implementation reduces
the probability of such a mix-up of links with equal hash value by storing
(hashCode, link) tuples in the Hashtable Globals.hashedLinks. This is
used as a cache that is filled every time links are offered in response to a
resolver query and lookup for the link belonging to a hash is always made
when someone ask for a link using its hash. The efficiency of this method
depends on parameters like network traffic (how general queries arrive in
what interval) or how long it takes from an arriving broadcast query until
the request for a offered link is received. This problem could be eliminated
if every resolver query was numbered pseudo uniquely (random) or included
a sender identification. Then it would be possible to have such a cache
not globally for all requesters but for each sender, and the correct cache,
determined again by the ID that would also be included in the pipe request,
could be used for lookup.

6.3 Resolver: Query ID

In the case of user management we only expect a single kind of answer,
namely an offer for a certain version of userdata. So we do not mind if the
response we receive relates to the last query we have sent or to an older one.
We simply ignore the offer if it is for a version older than the one we are
currently using.

For link exchange this is different. One peer can send out different queries
within a short time. Therefore it is never sure to which pending query a cer-
tain offer belongs. The solution is to pass around an ID the client sends in its
resolver query and which is included by the server in the resolver reply. iSer-
verP2P leaves the management of this ID (Integer) to the application. It has
to be given as parameter of the sendQuery method in the LinkQueryHandler
class.

If the assigned numbers cover a large range, more memory is required
because there exists a lookup table that matches the ID with the query it
was last used with. Otherwise a slow response could get assigned to the
wrong, more recent, query using the same ID.

6 LINK EXCHANGE 28

6.4 Pipe Request

After some time, set through the method setWaitingTime(int n) of the
class LinkTimerTask, the run method of LinkTimerTask is executed and
there the best n links are chosen out of the pot of all offered. Chapter 7
explains in detail how links are rated. The number n can be set to a larger
value than the default (1) by the method setNumResults(int n) of the
class LinkTimerTask. The links are then requested one by one over pipe
communication by their hash.

Only one of the probably many peers that offered a certain link is asked
to send it currently — if the net proves to be unstable we should of course
try a different source after waiting for an answer for a certain time.

6.5 Synchronization

Proper synchronization is even more important in link exchange than in
user management. As before serialization and materialization have to be
prevented from running in parallel. But here, already the construction of a
resolver response relies on a consistent DB (no half-materialized links) when
calculating the hash of a matching link.

7 LINK RATING 29

7 Link Rating

All link offers are collected over a certain time. The best ones later will be
requested over pipe communication.

The best offers are selected by evaluating a rating or filter function for
each link. Of course, the rating function takes into account the LinkOffer

we want to rate. Each LinkOffer contains the following information:

int hash

PipeAdvertisement adv

Individual creator

Additionally the rating function takes into account the complete collection
of all link offers that have been received. Out of this information a broad
range of different and complex rating functions can be designed.

The rating is implemented in a flexible, open way using rating plug-ins.
New rating plug-ins can be added dynamically and several plug-ins together
are then used to calculate a single rating value (refered to as global rating

hereafter):

public void addFilter(ILinkRater r, double factor) {

WeightedLinkRater wlr = new WeightedLinkRater(r, factor);

filters.add(wlr);

}

Each rating plug-in can be given a certain weight at insertion time.
By developing classes confirming to the ILinkRater interface (see below),

each application can easily write their own rating plug-ins. The only function
the ILinkRater interface declares is the rating function:

public double rate(Vector offers, LinkOffer linkOffer);

To be compatible with other rating plug-ins (i.e. to allow proper weighting),
this rate function should return a value between zero and one. Where one
denotes a link with maximal importance and zero is assigned to a link a
plug-in considers to be completely useless.

If the weight of a rater plug-in is a positive value then the result of the
plug-in evaluation is added in an additive way (after multiplying with the
adequate weight) to global rating.

Otherwise the result is taken into account multiplicatively, ignoring the
concrete value of the weight. This allows us to use plug-ins in a blocking way
— if the plug-in’s rating of a link is zero the result of the global rating will
also be zero independently of the value assigned to the link by other plug-ins.
In this case the rater plug-in charged multiplicatively works like an additive
plug-in with infinite weight.

7 LINK RATING 30

Implementation details As can be seen in the implementation of the
method addFilter, a Vector (filters) of separate rating elements of type
WeightedLinkRater is used for global rating.

Figure 5: LinkRater classes

<<Interface>>

ILinkRater

LinkRaterCreator

double (Vector offers, LinkOffer linkOffer)rate

<<create>>

double (Vector offers, LinkOffer linkOffer)rate

LinkRaterCopies

<<create>>

double (Vector offers, LinkOffer linkOffer)rate

LinkRaterComposed

Vector weightedLinkRaters

AddWeightedFilter(WeightedLinkRater wlr)

<<create>> (WeightedLinkRater wlr)

double (Vector offers, LinkOffer linkOffer)rate

WeightedLinkRater

double

ILinkRater

factor

linkRater

setFactor(double factor)

<<create>> (ILinkRater linkRater, double factor)

double (Vector offers, LinkOffer linkOffer)rate

double getFactor

<<create>> (ILinkRater linkRater)

Figure 5 shows the WeightedLinkRater and its context. LinkRaterBlock,
LinkRaterCopies and LinkRaterComposed are concrete examples of link rat-
ing plug-ins. The WeightedLinkRater binds a single ILinkRater to a factor
that determines its weight in the context of the other rating plug-ins used.
This factor can be specified at creation time, otherwise a default is used and
can be changed later through the setFactor method.

The WeightedLinkRater’s rate function just relies on the rate function
of the underlying ILinkRater.

7 LINK RATING 31

The function that finally rates a linkOffer (global rating) is implemented
as follows:

public synchronized double rate(LinkOffer linkOffer) {

double result = 1;

double factorSum = 1;

double mult = 1;

Enumeration enum = filters.elements();

while (enum.hasMoreElements()) {

WeightedLinkRater wlr = (WeightedLinkRater) enum.nextElement();

if (wlr.getFactor() > 0) { //additive

result = result + wlr.rate(offers, linkOffer)*wlr.getFactor();

factorSum = factorSum + wlr.getFactor();

} else { //multiplicative

mult = mult * wlr.rate(offers, linkOffer);

}

}

result = result / factorSum; //normalise back to range 0..1

return result * mult;

}

The fact that this global evaluation scales its result back to the 0..1
range (statement between additive and multiplicative part) does not have any
impact on the resulting ranking but would make sense if results of different
global evaluation strategies were compared to each other.

All links with a global rationg of zero will be filtered out and never re-
quested.

7.1 Link Rater Examples

LinkRaterCreator and LinkRaterCopies: Two pretty simple exam-
ples for rating plug-ins. LinkRaterCreator is an example of how the creator
can be used for link ranking. Currently, it just rates all links created by an
individual with a given name as zero all others are rated as one. Thus this
plug-in can conveniently be used in a multiplicative way acting as a blacklist.

LinkRaterCopies shows how the vector of all offers can be used for rank-
ing. It returns a value based on how often the link that is to be rated appears
in the list of all offers — a clue about how popular and important this link
is. Of course, if all links appear only once, all will get rated with the same

7 LINK RATING 32

default value and this rater plug-in is ineffective. The current implementa-
tion rates more popular links higher but probably one could also imagine a
scenario where a user is only interested in uncommon links and wants to rate
links appearing very often lower. The decision on how flexible and adjustable
such plug-ins should be is left to the application using iServerP2P.

LinkRaterComposed: The LinkRaterComposed class shown in Fig. 5
implements an abstract link rater plug-in composed of a bunch of
WeightedLinkRaters. The first WeightedLinkRater has to be given as a
parameter for the constructor and further can be added through the method
addWeightedFilter. The rate function of LinkRaterComposed considers
all underlying plug-ins (taking into account their weight). It is implemented
in the same way as the global rate function but here the normalisation of
the result to the 0..1 range is important as every ILinkRater should restrict
its output range.

Further ideas for rater plug-ins: LinkRaterDuplicates would be
a link rater that checks (by the hash) if a certain link received as answer
is already known. This plug-in should be used definitely in a multiplica-
tive way blocking known links. An optimisation could be implemented if
LinkTimerTask was extended with a list of hashes of all matching links in
the local DB. We would then compare to only those instead of all hashes. This
idea could be implemented pretty easy as a new instance of LinkTimerTask
gets created for every query anyway.

LinkRaterConfidence would be a very complex rating based only on the
creator (see section 10.5).

8 SERIALIZATION AND MATERIALIZATION 33

8 Serialization and Materialization

Link and user data communication both need to copy OMS Java database
objects from one iServer application to the other. This data distribution
should be language independent, additionally the OMS Java objects rely on
the underlying database. Therefore although over JXTA pipe communication
it is conveniently possible to post java objects directly this is not applicable
for iServerP2P.

Instead, iServerP2P exchanges all data using an XML representation. For
each data type that can be exchanged, a class exists offering the functionality
to transform an object to XML and also to rebuild the OMS java objects
referenced in such an XML document.

8.1 OM Types

Figure 6: Users OM Types

For user management only few clearly defined methods are needed as there
only the two types individual and group are involved. In addition those are
both subtypes of the (abstract) type user so part of the functionality needs
to be implemented even only once.

For link exchange the situation is different, links can have arbitrary enti-
ties as source or target (see Fig. 7). Plug-ins are needed for every supported
entity type.

This plug-in policy is very flexible as it does not specify how such XML
documents are built for a certain OMS type: Mainly which parts can be

8 SERIALIZATION AND MATERIALIZATION 34

Figure 7: iServer schema

omitted because they are irrelevant to the receiver (e.g. Object ID, user pref-
erences) or because they are not supported by iServerP2P (links as source
or target). But also how certain properties should be materialized (e.g. an
unknown layer of a selector should not be created newly but instead a default
layer can be used). And finally design decisions about nested or flat struc-
tures, attribute or element oriented approaches and naming of attributes and
tags can be made freely.

The only restriction that needs attention occurs when such marshalling
relies on super type marshalling which is the case for all entities in a sensible
design. Then no attributes or elements with names already used in a super
type can be utilised without renaming or nesting them into extra elements. A
case where this issue could easily occur is when subtypes overwrite attributes
of their supertype, a feature allowed in the OM model. An example would be
an entity contact that has an attribute phonenumber and a subtype private
that can overwrite the phonenumber with a different one, only visible when
the person is regarded the context of a private. But as every type knows its
supertypes and how they are serialized this issue can be solved by renaming
or nesting of elements in the XML representation.

8 SERIALIZATION AND MATERIALIZATION 35

8.2 Methods for Users

Figure 8: Individual XML

<individual oid=”OM 2032”>
<name>ch heinzer</name>
<description/>
<login>ch</login>

<password>h</password>

</individual>

Serialization Figure 8 shows the
XML representation of the simpler
kind of user, an individual. The el-
ements name and description store
user attributes, login and password
are specific to individuals. The oid
(object ID of the OM object), the
only attribute of this XML, can be
left away for user management as
this local property is ignored in the
materialization process anyway. For link identification based on the XML
the oid attribute must be omitted, as for example the creator of a link has
different object IDs on different iServer instances. Also the preferences of a
user are ignored by iServerP2P, they could hold application specific settings
like font size or window position, information of local interest only.

JdomType classes contain the functionality to serialize and materialize a
specific Type.

Figure 9: JdomIndividual

JdomUser

JdomIndividual

<<create>> (OMInstance user)

OMCollection (Element userElement)search

OMObject (Element userElement)materializeUnconditional

<<create>> (OMInstance ind)

OMCollection (Element individualElement, OMCollection collection)searchIn

OMObject (Element individualElement)materializeUnconditional

OMCollection (Element individualElement)search

OMObject (Element individualElement)materialize

All Jdom classes extend the Java type org.jdom.Element, a Java repre-

8 SERIALIZATION AND MATERIALIZATION 36

sentation of an XML Element [JDOM, url]. Figure 9 shows the two Jdom
classes relevant for an individual.

The constructur of a JdomType class takes an OMInstance of type Type

as argument and builds its Java XML representation. The reason that such
a constructor does not specifiy the concrete type (e.g. individual) in its
method declaration is the fact that with such an approach all JdomType

constructors have the same signature and thus can be invoked generically.
That is important for extensibility with future types (see section 8.5 for
details).

An XML parser is used on Jdom Elements or Documents to construct a
string representation that can be sent over P2P.

Materialization Materialization is more challenging because searching is
involved: New users should be created only if the user does not already exists.
Such a search method (static method of the JdomType class) takes a (Jdom)
Element as only parameter, which is expected to contain all the necessary
information.

Consider for example the steps involved in materialization of an individual
received as part of an XML document (String) over P2P communication:

1. A Jdom Document is built from the String.

2. The individual Element that should be materialized is extracted from
the Document.

3. JdomIndividual.materialize is called with the Element containing
the individual information as parameter.

4. The materialize method first checks if such an individual is already
known: JdomIndividual.search with the Element as parameter re-
turns a collection of all matching individuals.

(a) JdomIndividual.search relies on JdomUser.search

(b) JdomUser.search returns a collection of users matching the user
properties (name, description) of the individual.

(c) Out of the Collection of matching users, all that are of type in-
dividual and match in the individual specific properties (login,
password) are returned by JdomIndividual.search

5. If at least one matching individual is found, the base object of the first
match is returned and materialization does not occur, otherwise the
process continues with the JdomIndividual.materializeUnconditional
method.

8 SERIALIZATION AND MATERIALIZATION 37

(a) JdomIndividual.materializeUnconditional relies on
JdomUser.materializeUnconditional.

(b) JdomUser.materializeUnconditional creates the base object
together with an user instance of the object, further the user at-
tribute values (name, description) are assigned. The base object
is returned.

(c) JdomIndividual.materializeUnconditional creates an individ-
ual instance for the base object and assignes it the individual at-
tribute values (login, password).

6. Finally, JdomIndividual.materializeUnconditional returns the
newly created individual’s base object.

Group Specialities For groups the procedure is basically the same. The
difference is that groups can have other users as members and as group is a
subtype of user this structure can be deeply nested. iServerP2P treats groups
different in user management and link exchange.

Groups referenced in link exchange (AccessibleTo, InaccessibleTo) are
treated in a restricted way, ignoring membership. Membership information
of referenced groups should not be changed for a link receiver, possibly its
version of user data is more current anyway. So here only the group properties
(user properties name and description and the fact that it is a group and not
an individual) are taken into account for marshalling. Also group existence
check (searching) only depends on those basic features and not on group
members. An additional method materializeFlat relies on this check and
if no such group is found, it creates a new one without any members.

Groups marshalled for user management contain the whole membership
structure. Therefore if all users in a DB should be serialized, it will do to
serialize every user not member of a group (the “roots”), otherwise redun-
dant information would be generated.6 Search for such explicit groups is
not supported nor needed, user management uses the same existence check
method as link exchange. When a group to be materialized is found to exist
already, the membership information of the existing group is updated to the
membership information found in the received XML.

8.3 Link Specific Issues

Link marshalling requires a mechanism to serialize and materialize arbitrary
entities as the sources and targets of a link can point to anything. A restric-

6There is still redundancy if a group is member of several groups.

8 SERIALIZATION AND MATERIALIZATION 38

tion to this demand is implemented in iServerP2P’s link serialization: all
links pointed to by a certain link are ignored when serializing it. Otherwise
we would run into a problem one could call “spaghetti effect”: Pulling on one
end can effect in raising the whole pile of thightly interlinked stuff. Applied
to iServer this means if a single links should be serialized because it matches
a received query this link can be connected (directly over its own sources
and targets but in particularly indirectly over links connected directly) to an
unforeseeable huge amount of other links, even all in the extrem case.

The implementation details about how the marshalling of arbitrary selec-
tors and resources is handled are explained in section 8.5.

Search of a link works over its entity property (name) and the type, but
as that is somewhat little information also its sources and targets (S/T) are
considered but a conservative approach is implemented: S/T the sender could
not serialize as it does not have a wrapper for entities of such type are not
used to distinguish one link from the other. Also S/T of types the receiver
does not know are ignored for existence check and for materialization.

8.4 Transient and Persistent Objects

OMS Java supports transient objects. Unlike persisten data, transient ojects
exist temporary and will be disregarded at commit time, when the data is
written to disk. iServerP2P makes use of this feature. All links and the
referenced entities that are received over P2P are materialized as transient
objects at first. The method makePersistent can be called on every entity
and makes it and everything referenced persistent.

To avoid infinite loops when making mutual dependent objects persistent,
the first statement in makePersistent for such objects should be a check if
the object is already persistent.

When evaluating queries for remote peers, only persistent links are taken
into account as others were received over P2P and probably never reviewed.

8 SERIALIZATION AND MATERIALIZATION 39

8.5 Plug-ins Explained

This section outlines the steps involved when a JdomLink is constructed and
its sources and targets are serialized and how referenced entities are treated
in the materialization process of a link.

Figure 10: Jdom plug-ins

Plugins {abstract}

ResourcePlugins

Hashtable wrappers

invokeSearchOMCollection (Element element)

Element (OMInstance instance)getWrapper

EntityPlugins

registerResourceWrapper(String typename, String classname)

Element (OMInstance instance)getWrapper

OMCollection (Element element)invokeSearch

register(String typename, String classname)

OMObject (Element element)invokeMaterialize

ResourcePlugins INSTANCE

SelectorPlugins

SelectorPlugins INSTANCE

registerSelectorWrapper(String typename, String classname)

OMCollection (Element element)invokeMaterialize

Jdom plug-ins are used to locate the suitable JdomType class for mar-
shalling of entities. The abstract class Plugins contains the functionality to
register Jdom classes implementing this marshalling. A String indentifying a
resource or selector type uniquely is associated with the name of a JdomType

class responsible for this type. ResourcePlugins and SelectorPlugins are
two singleton subclasses of Plugins, separating resouce wrappers from se-
lector wrappers.

The constructor of ResourcePlugins and SelectorPlugins is executed
at first access to the singleton object. This constructor registers the default
types.

Serialization The first step for serialization of an arbitrary entity, when
dealing with a links sources or targets no further type information is availabe,
is implemented with help of org.sigtec.om.util.Polymorphism.getLeaf
Instance. This method takes an OMInstance as parameter and returns the

8 SERIALIZATION AND MATERIALIZATION 40

most specific OMInstance that exists for the underlying base object. The
serialization works then on this leaf OMinstance.

EntityPlugins.getWrapper constructs the Jdom representation for an
OMInstance. This method checks if the instance is a resource or a selector
and calls the getWrapper method of the corresponding Plugins class. The
getWrapper method uses a getType method provided by each subclass of en-
tity that returns the String identifying its type. The corresponding JdomType

class can be looked up in wrappers and its constructor is invoked.
The XML of a resource could look like (simplified example):

<resource type_name="medium">

<name>Spyglass</name>

<content>~movies/spyglass.swf</content>

<collection>movie</collection>

</resource>

Some elements as name store entity properties and thus are present in all
resource or selector XMLs, other elements and their content are resource
specific. The root element is created by JdomResource where the attribute
type name , identifying the resource type, is set. This attribute is set using
the above-mentioned getType method.

Materialization All information required to rebuild a resource or selector
is contained in the XML. The method EntityPlugins.invokeMaterialize

is called with a Jdom element of this XML as parameter. First is a check if
this element represents a resource or a selector based on the name of the root
element. The invokeMaterialize method of the corresponding Plugins class
then looks up the correct wrapper based on the type name and can invoke
the static method materialize of the correct JdomType class.

9 MANUAL FOR USERS AND DEVELOPERS 41

9 Manual for Users and Developers

9.1 Configuration

Figure 11: JXTA configuration

(a) advanced (b) rendezvous

9.2 Startup

• OMS JAVA load the iServer DB: see OMSJava documentation

• JXTA

import ch.ethz.inf.heinzerc.iserverp2p.ResolverPart;

...

ResolverPart.INSTANCE.userTimerTask.setWaitingTime(4000);

The first access to the singleton ResolverPart.INSTANCE triggers the
startup of the JXTA platform that includes
config.xml: login
join iServerP2P Group
Group.adv file, create a new if not found — communication will only be
possible with peers using the same group advertisement. So this makes

9 MANUAL FOR USERS AND DEVELOPERS 42

only sense if the created file is later distributed to other iServerP2P
users.

9.3 Queries and Responses

9.4 Basic Example

screenshot

9.5 Application Integration

There are two possibilities to integrate iServerP2P into existing or future
applications:

1. Extend the application with startup of iServerP2P, automated user
data update (send queries for new user data in a tunable interval)
and finally an user-friendly method to submit sensible queries. The
drawback of this approach is that source code of the application has
to be available and that it takes some effort to integrate the P2P part
smoothly (e.g. possibility to send a query for links on a certain entity
shown on screen without the need to formulate the query explicitly in
AQL).

2. Run in background a program similar to the example program shown
to deposit queries. The idea is to run the P2P component as supple-
mentary program in background and switch between base application
and P2P component to send queries. The base application should then
find and show any new users or links. As the current implementation
of OMS Java does not support concurrent access to a single database
this variant has major drawbacks. Firstly it is rather tedious as the
user has to close down the base application to send queries. Secondly
such utilisation will discurage users from letting always run the P2P
component in background. Having peers with high uptime is very im-
portant, mainly in the introductory phase when only few peers exist,
for content availability.

9.6 Troubleshooting

There are some issues and limitation we encountered and that should be
known to everyone who wants to use or extend our work.

9 MANUAL FOR USERS AND DEVELOPERS 43

9.6.1 JXTA Startup Problems

Normally, the JXTA platform boots up without reporting any exceptions as
explained in section 9.2. Nevertheless, different problems can occur:

Address already in use A java.net.BindException: Address

already in use: JVM Bind Exception is caused when there is another
JXTA peer running on the same machine configured to use the same port.

newNetPeerGroup failed This exception was always temporarily and is
presumably caused by a faulty resolver peer. If this exception should occur
over an unacceptable long period of time, we advise to switch to a different
resolver peer (see section 9.1).

9.6.2 java.io.IOException: Negative Seek Offset

During testing we encountered this exception several times and it is caused by
a corrupt JXTA cache (on disk). The error does not completely render JXTA
usage impossible but it will be thrown regularly and affects performance.
The only way to get rid of this problem is to clear the cache by removing or
purging the .jxta\cm subdirectory.
Be warned that the next startup will probably take considerably longer than
normally, if the local cache is completely empty. More information about the
cm directory can be found in [BROOKa, 02], page 89.

9.6.3 OutputPipeListener

This issue concerns the JXTA PipeService.createOutputPipemethod which
comes in two overloaded variants:

• OutputPipe createOutputPipe

(PipeAdvertisement adv, long timeout)

The blocking form where thread execution awaits for the creation of
the output pipe (binding to the corresponding endpoint).
The drawback of this approach is that in the worst case (if creation
fails), we spend the entire timeout time until we can proceed — and
possibly try to reach an alternative peer.

• void createOutputPipe

(PipeAdvertisement adv, OutputPipeListener listener)

9 MANUAL FOR USERS AND DEVELOPERS 44

This variant calls back a listener when the pipe is resolved.
The advantage to the blocking form is that here several requests for
outputpipe creation can be pending simultaneously.

In our original design the second approach was used but we had to realise
that this does not work very reliable. When several output pipes are cre-
ated back-to-back using the same PipeAdvertisement but always a different
OutputPipeListener then the callback mostly fires the same listener multi-
ple times instead of each one exactly once.

The reason for this behaviour is the way JXTA manages output pipe lis-
teners: The class PipeResolver has a Hashtable listeners and registering a
new listener via the createOutputPipe method in PipeServiceImpl results
in

listeners.put(pipeId.toString(), listener);

where the pipeId was extracted from the PipeAdvertisement argument.
Therefore if we try to register multiple listeners for the same
PipeAdvertisement only the most recent is kept and will be called back
later.

It is obvious now why the listener variant can only work reliable when
different advertisements (from multiple peers) are concerned. Because our
design was intended to work independently of the location of the communi-
cation partner and other pending communication requests, we avoided the
listener variant and prefered the blocking one for busy communication where
several output pipes can be created in succession.
In LinkTimerTask.run() and PipeListener.SendMsg(PipeAdvertisement, Link)

the listener variant is commented out and the corresponding listener classes

LinkOutputPipeListener and LinkResponseSender are marked abstract to pre-

vent imprudent use.

10 OUTLOOK AND ALTERNATIVES 45

10 Outlook and Alternatives

10.1 JXTA 2.2 +

10.2 Services

JXTA’s core functionality is based on a service concept: Peer group services
are comparable to plug-ins in a browser, they offer a certain functionality,
clearly separating definition from implementation. This concept offers the
advantage that e.g. third-party developers can easily define different imple-
mentations for the same functionality that can be used transparently. iSer-
verP2P could offer its user management and / or link exchange functionality
as a service and thus versioning (for updates in communication protocols)
would be simplified. But even if services are rather easy to implement, adding
them to a peer group and advertising them correctly is more difficult and an
overhead compared to our approach where the functionality is built fix into
the application.

A service always exists in the context of a specific peer group, there-
fore adding a new service requires creation of a new peer group and further
its description as different advertisement: a module class advertisement (a
rough, human readable description of the functionality), a module specifi-
cation advertisement (describes the specification, all service with the same
module specification are network-compatible) and finally a module imple-
mentation advertisement (describes a specific implementation of a module
specification).

10.3 Pipes

only Pipe, propagate Pipe,
OutputPipe Listener instead of blocking (see 9.6.3) - implement own wrap-
per: based either on the asynchronous variant where only one meta listener is
registered per pipe-ID and this meta listener calls back all registered listeners
for the related ID. Or one could build the same functionality on top of the
blocking variant just by starting a new thread for every blocking call.

10.4 Link Identification

Link identification by the help of hash functions over their XML represen-
tation was discussed elaborately and several critical aspects have been ad-
dressed. The simplest is the size of the hash used to identify links. It is only

10 OUTLOOK AND ALTERNATIVES 46

of type int, the probability of a collision could surely be reduced if a hash of
type long in association with a clever generation function was used.

All enhancements in the hash function can not solve the principal prob-
lems involved in the attempt to identify a link uniquely based on its XML
representation. Some issues (default layer) could be solved by using different
serializing methods for link exchange and hash generation / identification
which could ignore problematic properties. The problem that occurs if dif-
ferent iServerP2P users knowing different types (wrappers) want to exchange
links can not be solved so easily. The XML they each generate for links point-
ing to such types will definitely look different and this approach will identify
such a link as unknown even it (with all sources and targets of known types)
was just received and materialized. Perhaps this is the desired behavior be-
cause the links do differ in the incompatible parts but probably hashes of
links already materialized once should be recorded and ignored from further
responses.

A completely different approach could achieve link identification without
the use of hash functions: Each link could be assigned a Globally Unique
IDentifier at creation time. The distributed creation of such a GUID is not
trivial, the easiest possibility is to use a huge random number as does JXTA
for its identifiers. To have guaranteed uniqueness a (Time;IP) tuple could be
used, link creation would then be allowed only on machines conneced to the
internet over a non shared connection (otherwise we had to include the port)
and only after certain time intervalls (not several new links at the “same”
time). If every link was provided with such a GUID identification would
be trivial. As soon as a link a user received over P2P communication was
made persistent into its iServer database the decision had to be taken if this
link should keep its GUID (probably if all types of sources and targets were
known and could be materialized successfully), if it should keep its GUID
but should not be shared (if few types of sources or targets could not be
materialized and so the link lost some of its original information) or if the
link should even get a different GUID (if it has been modified and can be
considered as new, the receiver should be entered as creator in this case).

10.5 Link Rating

Besides hash and creator we could pack more information into the resolver
response: number of sources / targets of the link, date of creation or even a
date when the resources the link refers to were last checked for accessibility
or correctness (this info is not available within iServer right now).
This knowledge would allow us to implement more elaborate ranking func-
tions at the expense of a bigger size of the resolver response — something

10 OUTLOOK AND ALTERNATIVES 47

pretty important as a single resolver query can trigger potentially one answer
per reached peer.

A more challenging but possibly nicer alternative would be to leave this
analysis to the supplier by packing our preferences into the query (a fuzzy
query, e.g. asking for links which source includes a page near number 123 of
a certain document and having as much targets as possible) and the resolver
response would then contain a single matching value per link expressing how
good (difficulty: all peers have to evaluate the same matching function to
deliver comparable values) the demand is satisfied.

Link Ranking Based on a Confidence Value Rating Confidence val-
ues based on the creator could bring great quality improvements when a big
amount of different people use iServerP2P actively authoring their own links.

We can imagine to calculate those values in a distributed way (similar to
PGP) such that each user only has to judge a small amount of other users
but can obtain a confidence value for many users indirectly by asking those
he trusts about their opinion about a certain link creator.

This could involve matching certain peers to an individual. As it is now,
those concepts are completely independent but if we want to request the
opinion of a particular individual every listener of this request has to know
if he is concerned.

Alternatively, every individual could have an own pipe dedicated to this
confidence add-on (this pipe could be fixed for ever and stored in the Database
as are login or password right now) and if someone wants to contact a cer-
tain individual to ask about his ratings, he can be reached over this pipe —
of course only if at least one peer assigned to this individual is online and
listening on the pipe.

The indirection mentioned above can certainly not only be a single one
but can include multiple steps. Then we can not afford to update the con-
fidence value for a particular individual every time we want to rank it. We
should then keep a dynamic rating list in background and update it regularly.
The idea could be:
Individuals we have rated manually keep a fixed value.

All other individuals we know hold a mutable cached value that is initialised
with a neutral value at (first) startup but at some time interval we request
a ranking value for a (random) individual in this cachlist from all the indi-
viduals we have rated explicitely. They answer by looking up the requested
individual and probably tell us if they found it in their fix list (answer is
trustable) or from their own cache (rather doubtable answer). We can then
update the cachlist entry based on all the answers received and probably the

10 OUTLOOK AND ALTERNATIVES 48

old value (makes sense if we receive only very few answers because many
peers are possibly down at the moment).

If update frequency is high and most peers are not reachable for a certain
time then the content of our cache will soon converge to the ranking the few
reachable individuals have in their fix list. If such a feature is ever to be
implemented we would propose the following procedure:

1. Analyse current usage of iServerP2P: performance, online time of dif-
ferent peers / users, topology of network (who knows who)

2. Predict future usage and requirements

3. Simulate this scenario and find optimal parameters for cache update
frequency and mainly the implementation details of update as drafted
above.

11 PERSONAL CONCLUSION 49

11 Personal conclusion

The goals of this project were reached and I hope that my work will be
utilised and found useful.

This report points out many possible starting points for future activity
and enhancements. Nevertheless the basic example that is presented works
and could relatively easy be integrated into iServer applications. The entry
barrier from a technical point of view is low and this report provides some
valuable background information.

I can confirm the claim that JXTA is well structured and documented.
Having said that this framework is huge, complex and often it was not even
trivial to ignore, i.e. bypass, features I didn’t intend to use at all. This fact
was one of the elements that made my work exciting. The first several weeks
I had no idea if I could reach my goals with JXTA or if I had to switch to a
perhaps simpler but surely not so cool and feature rich alternative.

I valued the fact that the goal was well defined and concurrently I had
much freedom over design and implementation decisions. That all of my
OMS Java and iServer specific questions and requests could be answered by
experts was yet another very positive point.

Altogether I had much fun designing, implementing and testing iSer-
verP2P.

ACKNOWLEDGMENTS 50

Acknowledgments

My thanks goes to Beat Signer who did an excellent job supervising
and advising me during this project.
Special thank to Michael Grossnicklaus and Andrea Lombardoni, they
supported me when problems with my profile occured or as my ma-
chine got hacked.
Further I am very grateful that Adrian Kobler — the lead program-
mer of OMS Java — was able to fix some required features in very
short time.

REFERENCES 51

References

[BOOTSTRAP, url] http://www.cs.swarthmore.edu/

cgi-bin/berney/wiki.pl?BootStrap

[BROOKa, 02] Daniel Brookshier, Navaneeth Krishnan, Darren Govoni,
Juan Carlos Soto: Java TMP2P Programming
Sams Publishing, 10.2002

[BROOKb, 02] Daniel Brookshier: JXTA Resolver
10.2002
http://java.sun.com/features/2002/10/jxta_res.html

[JDOM, url] http://www.jdom.org/

[ISERVER, url] http://www.globis.ethz.ch/paperpp/iServer.pdf

[JXTAa, url] Projekt JXTA homepage http://www.jxta.org/

[JXTAb, url] Projekt JXTA protocol specification http://spec.jxta.org/

nonav/v1.0/docbook/JXTAProtocols.html

[GRADECKI, 02] Joseph D. Gradecki: Mastering JXTA: Building Java
Peer-to-Peer Applications
Wiley Publishing, 2002

[GNUTELLA, url] http://rfc-gnutella.sourceforge.net/developer/

stable/index.html

[LI, 01] Sing Li: Early Adopter JXTA: Peer-to-Peer Computing with Java
Wrox Press Inc, 12.2001

[NORRIE, 93] M. C. Norrie: An Extended Entity-Relationship Approach to
Data Management in Object-Oriented Systems
International Conference on Conceptual Modeling / the Entity Rela-
tionship Approach, page 390-401
Springer-Verlag, 12.1993

[NORRIE, 03] M. C. Norrie, Beat Signer: Switching over to Paper: A New
Web Channel
Zurich, 2003
http://citeseer.nj.nec.com/norrie00extended.html

[OMSJAVA, url] http://www.omsjava.com/

REFERENCES 52

[OVUM, 02] Peer-to-Peer Computing: Applications and Infrastructure
(Management Report)
Ovum Research & Consultancy, 1.2002
http://www.biz-lib.com/ZOVPP.html

[P2P, 02] Dejan S. Milojicic, Vana Kalogeraki, Rajan Lukose, Kiran
Nagaraja, Jim Pruyne, Bruno Richard, Sami Rollins, Zhichen Xu:
Peer-to-Peer Computing
HP Laboratories Palo Alto, 3.2002
http://www.hpl.hp.com/techreports/2002/HPL-2002-57.pdf

[SHIRKY, 00] Clay Shirky: What Is P2P ... And What Isn’t
http://www.openp2p.com/pub/a/p2p/2000/11/24/

shirky1-whatisp2p.html

[SCHMIDT, 02] Roman Schmidt: Gridella: an open and efficient Gnutella-
compatible Peer-to-Peer System based on the P-Grid approach
EPFL Technical Report IC/2002/71
TU Vienna, 10.02
http://citeseer.nj.nec.com/schmidt02gridella.html

[SPEAKFREE, url] http://www.fourmilab.ch/speakfree/

[STREAMER, url] http://www.streamerp2p.net/

[SUN, 03] Sun Microsystems: Project JXTA v2.0: Java Programmers Guide
5.2003
http://www.jxta.org/docs/JxtaProgGuide_v2.pdf

[TRAVER, 03] Bernard Traversat et al.: Project JXTA 2.0 Super-Peer Vir-
tual Network
Sun Microsystems, 5.2003
http://www.jxta.org/project/www/docs/JXTA2.0protocols1.pdf

[WALKER, 02] John Walker: The Digital Imprimatur. How big brother and
big media can put the Internet genie back in the bottle.
9.2003 (Revision 4, 4.11.03) http://www.fourmilab.ch/documents/

digital-imprimatur/

[WILSON, 02] Brendon J. Wilson: JXTA
New Riders Publishing, 2002
http://www.brendonwilson.com/projects/jxta/

APPENDIX 53

A Task Description

Institute for Information Systems:

Prof. M. C. Norrie

Diploma Thesis

Distributed iServer Architecture Based on Peer-to-Peer Concepts

Christian Heinzer

The Integration Server (iServer) architecture is an extensible cross-media linking platform en-
abling links between any kind of media. It is used within the European project Paper++, (under
the Disappearing Computer Programme, IST-2000-26130) to define links between paper and dig-
ital content and vice versa. The philosophy of the iServer architecture is to provide basic link
functionality (including user management etc.) which then can be extended to support different
kinds of new content (physical or digital).

The current iServer implementation stores link information within a single “centralised” database.
Users can access preauthored links defined in the database as well as add their own new links
which can then be shared with other users or groups of users.

The goal of this diploma thesis is to develop a decentralised version of the iServer architecture
where a user stores his personal linking information in a local iServer instance. A user may access
local link knowledge as well as information fetched from other users iServer databases. Since we
do not know which users will be “online” at a certain time, the idea is to use similar concepts for
user discovery as used in peer-to-peer networks. A user should be able to ask the community if
they have linking information for a specific resource. Since the resulting set of links may be quite
large we further have to classify the quality of the received links. A possible solution could be to
introduce confidence values between different users which will be used for ranking.

The main tasks of this diploma thesis are as follows:

• Investigation of the current iServer framework and different existing peer-to-peer architec-
tures.

• Definition and implementation of a user discovery service and a communication protocol to
transmit linking information between different iServer instances.

• Development of a mechanism for link ranking (e.g. based on confidence values)

The project report should give a short overview over existing peer-to-peer approaches. It should
then describe the protocol used to exchange information between different iServer instances and
introduce one or more solutions to qualify the retrieved links. Finally, the report should provide
a “user manual” and some instructions how such a distributed version of the iServer has to be
installed.

Start Date: Monday 27 October 2003
Environment: Java, OMS Java, iServer, XML, Peer-to-Peer technology
Supervision: Beat Signer, IFW D46.2

B API REFERENCE 54

B API Reference

ch.ethz.inf.heinzerc.iserverp2p.ResolverPart
java.lang.Object

public ResolverPart

extends Object

ResolverPart is the entry Class for IServerP2P. As only one instance of
resolverPart can exist this is a singleton Class with private Constructor.
Startup of the JXTA network happens transparently in the constructor.

The methods found here could be integrated into the iServer core.
Fields

Type Description

public static final Re-
solverPart

INSTANCE

public Resolver-
Part.LinkQueryHandler

linkQueryHandler

public Resolver-
Part.UserListQueryHandler

userListQueryHandler

public UserTimerTask userTimerTask

ch.ethz.inf.heinzerc.iserverp2p.ResolverPart.UserListQueryHandler
java.lang.Object

public ResolverPart.UserListQueryHandler

extends Object

UserManagement QueryHandler for resolver.
Fields

Type Description

protected Structured-
TextDocument

credential

protected SimpleDate-
Format

format

B API REFERENCE 55

Type Description

protected String handlerName
protected PipeService pipe

Methods

Returns Description

public synchronized int processQuery(ResolverQueryMsg query)
public synchronized void processResponse(ResolverResponseMsg re-

sponse)
public synchronized void sendQuery() Query for more recent user data

ch.ethz.inf.heinzerc.iserverp2p.ResolverPart.LinkQueryHandler
java.lang.Object

public ResolverPart.LinkQueryHandler

extends Object

QueryHandler for resolver.
Fields

Type Description

protected Structured-
TextDocument

credential

protected SimpleDate-
Format

format

protected String handlerName
protected PipeService pipe

Methods

Returns Description

public synchronized int processQuery(ResolverQueryMsg query)
public synchronized void processResponse(ResolverResponseMsg re-

sponse)
public synchronized void sendQuery(String query, LinkTimerTask ltt,

Integer id) Query for Links.

B API REFERENCE 56

ch.ethz.inf.heinzerc.iserverp2p.UserListResponseSender
java.lang.Object

public UserListResponseSender

extends Object

Constructors

Description

UserListResponseSender() Creates a new instance of ResponseSender

Methods

Returns Description

public void outputPipeEvent(OutputPipeEvent event)

ch.ethz.inf.heinzerc.iserverp2p.EntityPlugins
java.lang.Object

public EntityPlugins

extends Object

EntityPlugins is the public Class that allows to manages Resource and Selec-
tor Plugins. A normal client should only require the two methods to register
a Wrapper Everything else has to be public as it is used by Jdom classes.

Constructors

Description

EntityPlugins()

Methods

Returns Description

public static Element getResourceWrapper(OMInstance in-
stance)

public static Element getSelectorWrapper(OMInstance instance)
public static Element getWrapper(OMInstance instance)
public static OMObject invokeMaterialize(Element element)

B API REFERENCE 57

Returns Description

public static OMObject invokeResourceMaterialize(Element ele-
ment)

public static OMCollec-
tion

invokeResourceSearch(Element element)

public static OMCollec-
tion

invokeSearch(Element element)

public static OMObject invokeSelectorMaterialize(Element ele-
ment)

public static OMCollec-
tion

invokeSelectorSearch(Element element)

public static void registerResourceWrapper(String type-
name, String classname) registers a resource
plugin

public static void registerSelectorWrapper(String typename,
String classname) registers a selector plugin

ch.ethz.inf.heinzerc.iserverp2p.UserTimerTask
java.lang.Object

java.util.TimerTask

public UserTimerTask

extends TimerTask

UserTimerTask runs a certain time after the first responses to a query for
user data was received. In run method, UserTimerTask chooses the best
(latest) offer and gets user data over pipe communication

Fields

Type Description

public static int WAITINGTIME

Methods

Returns Description

public void run()
public synchronized void setWaitingTime(int i)

B API REFERENCE 58

ch.ethz.inf.heinzerc.iserverp2p.LinkTimerTask
java.lang.Object

java.util.TimerTask

public LinkTimerTask

extends TimerTask

A LinkTimerTask runs a certain time after a query for links was sent. In run
method, LinkTimerTask chooses the best offered links and gets them over
pipe communication

Fields

Type Description

public static int NUMRESULTS
public static int WAITINGTIME

Constructors

Description

LinkTimerTask() Creates a new instance of LinkTimerTask

Methods

Returns Description

public synchronized void addFilter(ILinkRater r)
public synchronized void addFilter(ILinkRater r, double factor)
public synchronized void run()
public void setNumResults(int n)
public void setWaitingTime(int n)

ch.ethz.inf.heinzerc.iserverp2p.UserData
java.lang.Object

java.util.Observable

public UserData

extends Observable

Constructors

B API REFERENCE 59

Description

UserData()
UserData(Date d)

Methods

Returns Description

public Date getDate()
public void processChange()
public void setDate(Date d)

ch.ethz.inf.heinzerc.iserverp2p.LinkData
java.lang.Object

java.util.Observable

public LinkData

extends Observable

Constructors

Description

LinkData()

Methods

Returns Description

public void processChange()

ch.ethz.inf.heinzerc.iserverp2p.LinkOffer
java.lang.Object

public LinkOffer

extends Object
implements Comparable

LinkOffer is a Class for a Link offered over P2P communication

B API REFERENCE 60

Fields

Type Description

public PipeAdvertise-
ment

adv advertisement for the pipe to the peer of-
fering this link

public Individual creator creator of this link
public int hash hash of the offered Link

Constructors

Description

LinkOffer(Integer hash, PipeAdvertisement adv, Individual creator) Cre-
ates a new instance of LinkOffer

Methods

Returns Description

public int compareTo(Object o) implements ordering
by hash

ch.ethz.inf.heinzerc.iserverp2p.LinkRaterCreator
java.lang.Object

public LinkRaterCreator

extends Object
implements ILinkRater

Constructors

Description

LinkRaterCreator() Creates a new instance of LinkRater

Methods

Returns Description

public double rate(Vector offers, LinkOffer linkOffer)

B API REFERENCE 61

ch.ethz.inf.heinzerc.iserverp2p.LinkRaterCopies
java.lang.Object

public LinkRaterCopies

extends Object
implements ILinkRater

Constructors

Description

LinkRaterCopies() Creates a new instance of Ex2LinkRater

Methods

Returns Description

public LinkRater-
Copies.IntegerTupel

getMaxEquals(Vector offers, int thisHash)

public double rate(Vector offers, LinkOffer linkOffer)

ch.ethz.inf.heinzerc.iserverp2p.LinkRaterCopies.IntegerTupel
java.lang.Object

public LinkRaterCopies.IntegerTupel

extends Object

Constructors

Description

LinkRaterCopies.IntegerTupel(int maxEquals, int thisEquals)

ch.ethz.inf.heinzerc.iserverp2p.LinkRaterComposed
java.lang.Object

public final LinkRaterComposed

extends Object

B API REFERENCE 62

implements ILinkRater

Constructors

Description

LinkRaterComposed()

Methods

Returns Description

public synchronized void addWeightedFilter(WeightedLinkRater wlr)

public synchronized void LinkRaterComposed(WeightedLinkRater
wlr) Creates a new instance of LinkRater-
Composed

public double rate(Vector offers, LinkOffer linkOffer)

ch.ethz.inf.heinzerc.iserverp2p.Globals
java.lang.Object

public final Globals

extends Object

Globals is the Class containing static members useful for several different
classes within IServerP2P. This Class is final and can’t be instantiated as the
constructor is private. The methods found here could be integrated into the
iServer core.

Fields

Type Description

public static Hashtable hashedLinks Hashtable containing (hash,
Link) tuples connecting hashes offered to the
corresponding link.

public static Object iServerDBSynchro Object used only for syn-
chronisation.

public static LinkData linkData linkData Object can also be used for
synchronisation.

public static P2PLogger logger Logger to print out debug info

B API REFERENCE 63

Type Description

public static Object pipeSynchro Object used only for synchroni-
sation.

public static UserData userData userData Object can also be used
for synchronisation.

Methods

Returns Description

public static Layer createDefaultLayer() Creates a Layer called
”Default”. If such a layer already exists it is
returned.

ch.ethz.inf.heinzerc.iserverp2p.Helpers
java.lang.Object

public Helpers

extends Object

Helpers contains assorted utility functions (all static).
Constructors

Description

Helpers()

Methods

Returns Description

public static boolean dateIsValid(Date date) Checks if a date is
accepted or ignored as fake.

public static String dateToString(Date date) Converts a date to
it’s string representation.

public static Date readdate() returns the date (version) of the
userdata currently in the DB

public static String readInputStream(InputStream is, int len)
reads a string from a InputStream.

public static String readTextFile(String filename) reads a string
from a file.

B API REFERENCE 64

Returns Description

public static String serializeJdomElement(Element element,
boolean plain) transforms a JdomElement to
it’s string representation.

public static Date stringToDate(String s) Converts a string to
the date it represents.

public static void writedate() sets the date of userdata to the
current time

public static void writedate(Date d) sets the date of userdata
public static void writeTextFile(String s, String filename)

writes a string into a file.

ch.ethz.inf.heinzerc.iserverp2p.P2PLogger
java.lang.Object

public P2PLogger

extends Object

P2PLogger is the Class for IServerP2Ps debug output.
Methods

Returns Description

public void disableOutput() Turns logging off
public void enableOutput() Turns logging on for all lev-

els
public void log(Object obj) Prints obj for debug purpose.

As java logger doesn’t format output nice and
prints important messages twice this method
uses system.out directly for now

public void logFinest(Object obj) Prints obj for debug
purpose, output is tagged as unimportant.

public void logImportant(Object obj) Prints obj for de-
bug purpose, output is tagged as important.
Java logger will print this object twice

