
Distributed Collaborative Information
Environment based on iServer

Diploma Thesis

Alexandre de Spindler
<alex@vis.ethz.ch>

Moira C. Norrie
Beat Signer

Global Information Systems Group
Institute of Information Systems

Department of Computer Science

19th May 2005

Copyright© 2005 Global Information Systems Group.

Contents

1 Introduction 3
1.1 iServer . 4
1.2 Distributed iServer . 4
1.3 Document Structure . 5

2 An Interaction Architecture for Distributed Information Systems 7
2.1 Request Factory . 8
2.2 Handling . 9
2.3 Request and Response . 10
2.4 Messaging . 12
2.5 Protocol Schema Definitions . 14
2.6 Assembly of the Components and Evaluation of the Architecture 16

2.6.1 Essentials of the Components . 17
2.6.2 Possible Adaptations . 20

3 Distributed iServer 23
3.1 Request Factory . 23
3.2 Data . 24
3.3 Messaging . 28
3.4 Protocol Schema Definitions and Marshaling 28

4 Implementation of an iServer Web Service 37
4.1 Axis Web Service Framework . 37
4.2 Web Service Specific Components and Workflow 37
4.3 Example Usage . 39

5 Implementation of a Peer Service for iServer 47
5.1 JXTA Framework . 47

5.1.1 Advertisement . 48
5.1.2 Peer . 48
5.1.3 Peer Group . 48
5.1.4 Resolver Service and Resolver Query Handler 49
5.1.5 Pipe . 49

5.2 User Management . 49
5.2.1 User Validity . 49
5.2.2 User Rating . 50
5.2.3 Propagation Retardation . 52

iii

iv CONTENTS

5.3 Response Rating . 53
5.3.1 RatingManager . 53
5.3.2 ResponseRater . 54
5.3.3 Aggregator . 55

5.4 Peer Service Specific Components and Workflow 55
5.4.1 JXTA . 56
5.4.2 Handling . 58
5.4.3 iServer P2P . 61
5.4.4 Workflow . 61

5.5 Example Usage . 63

6 Conclusions 71
6.1 Goals and Results . 71
6.2 Future Work . 73

A User’s Manual 75
A.1 iServer Web Service . 75
A.2 iServer Peer Service . 77

B Web Service Tutorial 85
B.1 Translator Web Service . 85

B.1.1 Overview . 85
B.1.2 Demo . 85
B.1.3 Instructions to run it on your Machine 86

B.2 Implementing the Translator Web Service with Apache Axis 86
B.2.1 Step One: Implement a Java class 86
B.2.2 Step Two: Generate a WSDL File . 87
B.2.3 Step Three: Generate Client and Server Java Classes 88
B.2.4 Step Four: Fill in the Blanks . 89
B.2.5 Step Five: Write a Client . 90
B.2.6 Step Six: Setup Apache Tomcat 5.x 90
B.2.7 Step Seven: Setup Apache Axis . 92
B.2.8 Step Eight: Deploy the Translator Web Service 92
B.2.9 Step Nine: Give it a Test Drive! . 93

C Alternative Request Pattern 97
C.1 Introductory Examples . 97
C.2 Generalised Query Model . 99
C.3 Example Query . 102

Abstract

The iServer architecture is a platform enabling linking of arbitrarily typed objects. It pro-
vides a metamodel defining fundamental link concepts which allow to flexibly structure and
link information spaces. iServer applications have mainly been employed in a single-author-
multiple-reader manner so far. The goal of this diploma thesis was to design and implement
a collaborative iServer information space that allows members of a community to publish
content and retrieve content published by other members. The resulting iServer web service
and peer-to-peer implementations are based on a generalised interaction architecture. This
architecture consists of five components each of them abstracting a particular aspect of inter-
action in a collaborative information system. Its main achievement is to facilitate the design
and implementation of applications for distributed information sharing.

1

2 CONTENTS

1
Introduction

Information systems not only store and give access to data but also offer facilities to seman-
tically enrich the data. Traditionally, semantics are implied by a database schema definition
which prescribes a structure all data must comply to. Structure consists of entity definitions,
their attributed properties, assignment of roles and establishing of relationships [12]. Hence,
relationships connecting entities make up part of the semantics contained in an information
system.
A relationship consists of a connection between classes of entities. Two classes of entities
are connected if the database schema provides a way of retrieving entities of one class by
means of entities in the other class. The semantics of a relationship is mostly implied by a
naming convention. A relationship may be defined explicitly by connecting classes of entities
or implicitly in terms of a sequence of transitive connections.
Within hypertext data the hyperlink concept indicates another aspect of relationships.
Whereas in traditional databases a relationship is defined on the class level, hyperlinks estab-
lish connections on the object level. Nevertheless, since class level relationships entail object
level connections, class level relationships can also be inferred from object level connections.
Thus hyperlinks can be regarded as a bottom up approach in creating a database schema and
their employment clearly contributes to the semantical enrichment of the information system
they are part of, i.e. the Web.
The Web can be regarded as a simple case of a database. Its entities are objects of various
types such as hypertext documents, pictures, video and sound files. A link is a relationship
between a source and target object. Obviously, these two observations do not lead to a se-
mantically rich schema definition which is a well known problem with information in the
Web. While the unstructuredness of Web data naturally leads to a wide variety of content, the
vast amount of data and lack of semantics make it merely impossible to effectively retrieve
information.

3

4 1.1. ISERVER

1.1 iServer

The Information Server iServer is an architecture that aims at resolving this dilemma. It
combines both strengths, the structuredness of database content and the facility to structure
and link information spaces in a flexible way, while supporting a range of physical and digital
media types [14]. In fact, iServer defines a metamodel according to which objects of arbitrary
types can be linked. It supports the definition of relationships on object level while preserving
a database environment for structured data management. Following we give a simple and
general description of iServer’s main concepts.
The core of the iServer schema is the definition of an Entity class which comprises any
object type. An iServer Link object consists of one or multiple source and target Entity
objects. Thus, any type of objects can be connected by a link. The basic information units are
classified as Resources. Additionally, a Selector object allows the definition of sub-
parts of a Resource object to be a link source or target. Link, Selector and Resource
are subclasses of the Entity class which allows a maximum flexibility in creating links. For
example, a Link object may itself be a source or target of another link.
The iServer architecture addresses the nested link issue by introducing the concept of a
layer. Any Selector object is associated with exactly one layer and overlapping lay-
ers have an explicit ordering. If a selection consists of multiple nested selectors, the selector
associated to the uppermost layer will be followed. Hence it is possible to define the behav-
iour of nested Selector objects.
The iServer also supports user management that allows personalisation and content sharing
based on access rights. The Entity class is associated with a User class which allows
to explicitly grant or deny access to an Entity object for a user. The User class is parti-
tioned into Individuals ans Groups for efficient user management. Additionally, each
Entity object is associated with an Individual object representing its creator.

1.2 Distributed iServer

iServer databases have mainly been employed in a single-author-multiple-reader manner so
far. A designated user prepares and maintains data published while consumers retrieve the
available information. This one way flow of information is a widely applied publishing par-
adigm where information is made available within a community of anonymous users. The
trustworthiness of the publisher is based on social agreement.
The advantage is that a designated publisher dedicates himself to creating and maintaining
content which assures information supply. However, the creation and maintenance of a data-
base takes much effort. Also, since the goal of a publisher must be to satisfy the needs of his
entire target audience the content might not be appropriate to individual consumers.
In this work we investigate another publisher-consumer-model where consumers retrieve each
other and thus act as publishers themselves. This model produces a wider variety of link
structures since every member of the community is a potential publisher.
Several issues must be addressed before applying such a publisher-consumer-model. Brook-
shier et al. [3] name three problems arising in a community of publishers and consumers
equally responsible for the available content:

• Scrounging is a phenomenon that can be observed in current file sharing communities.

CHAPTER 1. INTRODUCTION 5

A leecher is a participant which consumes without contributing. Communities consist-
ing of too many leechers produce only little content and all the traffic is focused on few
publishers which slows down the access.

• Spamming has come up with the popular misuse of communication channels such as
e-mail and usenet. Any community with democratic publishing can be a target for
unsolicited content, e.g. advertisement.

• Malicious content can be published for various reasons with the goal to reduce the
community’s worth. For example, file sharing communities have been victims of record
company’s attempt to publish low quality content for economic purpose.

The information supply must be assured despite the potentially vast number of publishers. It
is therefore advisable to keep designated publishers which not only guarantee content quantity
but also a certain level of quality. The ability of every member to publish content must be
treated as an extension to the single-publisher model and not as a replacement. The goal is to
produce more content in a wider variety but still to have a solid basis.
The spamming and malicious content issues can be addressed by introducing a user rating
system that accounts for the lack of social agreement about the trustworthiness of individual
publishers.
We implemented a system that allows members of a community to publish content and re-
trieve content published by other members. Instead of having one centralised database in-
stance as in the single-publisher-model, every member runs a local instance. All members
can access each other’s database and the database of each member is accessible to all other
members. We propose a generalised architecture enabling remote access to an extent that
is set by its concrete implementation. The architecture is independent of the database it is
applied for and supports arbitrary content as well as schema definitions.
This architecture regulates the interaction between members of a community. It can be used
in conjunction with various technologies allowing remote communication. In this work we
implemented a web service and a peer-to-peer service for iServer.

1.3 Document Structure

We introduce our interaction architecture in Chapt. 2 and present its extensions for iServer
in Chapt. 3. The iServer web service and peer service implementations are presented in
Chapt. 4 and 5, respectively. In Chapt. 6 we draw conclusions from our work and a user’s
manual is provided in Appendix A.

6 1.3. DOCUMENT STRUCTURE

2
An Interaction Architecture for

Distributed Information Systems

In this section we propose a formalisation of the interaction between distributed information
systems. Distributed systems offer services giving access to their stored information. As
opposed to commonly used databases, where a user accesses information directly, such a
service is mostly consumed by another information system or program. The user accesses
a remote system through a local system. Typically the two systems are of the same kind in
terms of their access interface and information schema.
Our architecture defines the manner in which participants of a service exchange information.
In order to simplify the understanding of the architecture, we assume a simple request re-
sponse model. Regardless whether we are considering a web service or a peer-to-peer service,
the moment a participant polls another participant, those two can be regarded as engaging into
a client-server relationship handling a request with a response. To avoid any confusion we
use the terms local to denote a client requesting information and remote for a server re-
sponding on request. Note that in a peer-to-peer service a peer does both, sending requests as
well as responses.
In Fig. 2.1 we propose a general interaction schema according to which services such as web
and peer-to-peer can be implemented. A database API defines methods to retrieve, manipu-
late, add and remove data stored in an information system. Any request to the system must
either be an API method call or a higher level operation composed of multiple API method
calls. The goal of a service is to offer the database functionality of a remote system to a local
system.
The figure depicts a situation where a local system makes a request to a remote one. It
shows all required components. We use Data objects to encode the request to be processed
remotely and the resulting response. A Request object is created by a request factory
which can be regarded as a local interface to the database functionality offered by the remote
system. The request is handed over to a Local Request Handler (a) which creates a
Message object containing it. A message wraps a Data object. It can generate an XML

7

8 2.1. REQUEST FACTORY

Message

Message

Message

Local Request Handler Remote Request Handler

Request Factory

Database API

Message

Database API

XMLString

XMLString

Data

Data

Data

Data

a

b c

d

e

fg

h

Figure 2.1: General schema for interaction between distributed information systems.

string from which it can be reconstructed (b). The string value is transmitted to a Remote
Request Handler which reconstructs the message and extracts the Request object (c).
A request processes itself by independently interacting with the API of the remote database
(d) and returns a Data object containing the response (e). The remote handler just initiates
the request processing and uses the Response object to create a Message object which is
returned to the local request handler as XML string (f). The local handler reconstructs the
message and extracts the response (g). The response can either be presented directly to the
user or fed back to a local information system (h). In the second case the data stored in the
remote system can be transparently made available to the local system.
In this general interaction schema we identify four components which participate in the inter-
action between the local and the remote information system: a local request factory, request
handlers, data and message objects. A fifth component, which is not shown in Fig. 2.1, is the
protocol schema definition according to which data objects are represented as XML strings.
In sections 2.1 - 2.5 we present these components individually while in Sect. 2.6 we outline
the interplay of the components and point out the advantages of implementing a service by
using them.

2.1 Request Factory

A request factory constructs Request objects that encode a request to a remote information
system. It can be regarded as the interface to a remote system. A request may represent a
single database API method which is to be invoked on a remote system. It may also represent

CHAPTER 2. AN INTERACTION ARCHITECTURE FOR DISTRIBUTED INFORMATION SYSTEMS 9

a higher level operation consisting of multiple database API method calls. The factory con-
tains a static method for each request that can be processed remotely. Each method returns a
Request object encoding the particular request it represents.
A request factory can be implemented according to the functionality designed to be offered by
the service. It may replicate the database API completely or partly and offer service-specific
higher level operations. The set of its static methods defines the complete functionality of-
fered by the service, since it is the only place where Request objects are created. A request
factory must be implemented specifically for each interface that is to be offered as service,
for each database API that is to be used to process the request and for each request pattern.
Figure 2.2 shows a pseudo UML diagram of the request factory. All API methods are repre-
sented with the expression in squared brackets. Note that a request factory does not neces-
sarily replicate database API methods but may also combine multiple API method calls with
one request.

+[Database API Method]() : Request

RequestFactory

+[Method]()

Database API

+computeResponse() : Response

Request

Figure 2.2: The request factory forms the interface to a remote information system.

2.2 Handling

Handlers are used to initiate and control the processing steps required to implement a service.
Handlers are implemented specific to a service framework such as web service or peer-to-peer
service. Figure 2.3 shows the UML diagrams of a typical local and remote request handler.
A LocalRequestHandler object handles a Request object and returns a Response
object. A RemoteRequestHandler handles an XML string representing a message con-
taining the request and returns an XML string representing a message containing the response.

+handleRequest(request : Request) : Response

«interface»

LocalRequestHandler

+handleRequest(request : String) :String

«interface»
RemoteRequestHandler

Figure 2.3: Handlers implement the service specific requirements for communication with a
remote system.

The local request handler transforms the Request object into an XML string using a

10 2.3. REQUEST AND RESPONSE

Message object. The string value is transmitted to the remote request handler. Therefore the
local handler must be able to contact the remote handler and to transmit a string value. Since
the procedure of locating, contacting and transmitting a message to a remote system varies
with the service framework used, the handlers must be implemented specifically for each
framework. They encapsulate the framework specific requirements and implement interface
methods that use Data and String parameter and return types. The handling component
ensures that all other components are independent from the service framework.
The remote request handler uses the XML string received to reconstruct a corresponding
Message object from which it extracts the Request object. Since the Request object
processes itself, the handler only needs to initiate the processing and construct another mes-
sage containing the response resulting from it. The XML string representing the response
message is returned to the local remote handler where the Message object is reconstructed.
The local handler extracts the response which can either be presented directly to the user or
fed back to the local system.
Alternatively, a request response pattern can be implemented so that the response is not re-
turned by the local request handler as described above. Instead, a ResponseHandler ob-
ject registered with the request handler is notified whenever a response arrives. The response
handler processes the response, e.g. by feeding it back into the local database. This pattern is
appropriate when a request causes multiple responses or when a response to a request cannot
be expected immediately.

2.3 Request and Response

The core of our interaction architecture consists of Data objects representing a request or
response. The Request and Response objects are wrapped in a Message object that
generates its XML string representation from which it can be reconstructed. A Message
object generates an XML document and adds an XML element representing the Data object
it wraps. Thus, any data to be wrapped in a message must offer methods to generate an XML
element and another method from which it can be reconstructed from an element. In Fig. 2.4
we define an abstract class Data that declares these methods. Hence, any type of object
derived from the Data class can be wrapped in a message. Implementations of the Data
class use the element factory introduced in Sect. 2.5 to convert their own member objects
from and to XML elements. The method toXML(String) takes as argument a string value
which is used as the name of the generated XML element. Thus, a Message object is able
to name the children elements of its representing root element according to the XML schema
definition. The schema definitions are introduced in Sect. 2.5.
A Message object that is reconstructed from an XML string parses the string and extracts the
XML element representing the Data object it contains. The Data object is reconstructed
using Java Reflection which requires the name of the class to be constructed. Reflection
is a feature in the Java programming language that allows an executing program to exam-
ine and manipulate its own classes, their fields and methods. Among other things classes
can be created and methods executed based on their names and signatures only. There-
fore, the XML element representing a Data object contains an attribute holding the class
name. However, sometimes we do not need to reconstruct a Message object from its XML
string representation, e.g. a response message in a web service. Therefore we implemented a
toNonJavaXML(String) method not shown in Fig. 2.4 for the Data class which returns

CHAPTER 2. AN INTERACTION ARCHITECTURE FOR DISTRIBUTED INFORMATION SYSTEMS 11

+[Method]()

Database API

«exception»

InvalidDataException

+Data(data : Element)

+toXML(name : String) : Element

Data

+computeResponse() : Response

Request

+getObject() : Object

-object : Object

Response

+fromXML(element : Element) : Object

+toXML(object : Object) : Element

XMLElementFactory

Figure 2.4: Data objects used to represent requests, responses and any other object with a
registered marshaler. Data objects can be wrapped in message objects.

an XML element without the class name attribute.
The constructor of the Data class throws an InvalidDataException in case an object
cannot be constructed with the XML element given as parameter. This exception declares a
constructor taking another exception as argument which is considered as its cause. Typical
causes are MalformedXMLException and NotRegisteredException which will
be introduced shortly.
A request to a remote information system encodes the database API method calls necessary
to obtain the result. In our work we have implemented a Request subclass that uses Java
Reflection to encode and execute an iServer API method invocation. We have also imple-
mented another set of Request subclasses that allow database querying based on select and
intersect operations which can be nested (Appendix C). In order to be able to support arbi-
trary request patterns we define an abstract Request class that ensures the availability of a
computeResponse() method returning a Response object. The handlers rely on this
method only and, thus, all other components of our architecture stay independent from the
request implementation.
Figure 2.5 illustrates the processing of a request. The method initiates the processing of the
request which is carried out by the Request object interacting with the database API (a and
b). The method creates and returns a Response object representing the result (c).
A Response object contains the result of a request which allows it to be wrapped in a
message and be represented as and reconstructed from an XML string. The Response class
shown in Fig. 2.4 contains a member of type Object where the response to a request is
assigned to. The method getResponse() gives access to this member. Subtypes of the
Response class can be implemented that cast the result object to a specific type inside
this method. The request factory knows which type of object is returned by a particular
request. Therefore, it constructs objects of a type extending the abstract Request class.
These objects return Response objects of a subtype of the Response class. For example,
if a particular request is known to return an integer value the request factory constructs an
object of type IntegerRequest which extends the abstract Request class. The method
computeResponse() in the integer request class returns an object of type Integer-
Response that extends the Response class. Its getObject()method returns an integer
object.
Since a Request object interacts with the database using its API methods and since the

12 2.4. MESSAGING

a b c

+getObject() : Object

-object : Object

Response

+computeResponse() : Response

Request

«interface»

Database API

Figure 2.5: Workflow within the computeResponse() declared by the Request class.

Response objects contain results corresponding to the API methods’ return types, they must
both be implemented specifically to a database interface definition. The toXML(String)
and fromXML() methods must return XML elements conforming to the protocol schema
definitions presented in Sect. 2.5.
In the iServer peer service introduced in Chapt. 5 responses received are compared for rating.
Therefore, the Response class overrides the method equals(Object) by delegating the
equality request to its Object member.

2.4 Messaging

In our interaction architecture requests and responses are transmitted as XML strings.
Request and a Response objects represent the request to a remote information system
and the resulting response. In order to facilitate the transformation of a Data object to its
string representation and vice versa we designed a Message class (as shown in Fig. 2.6).
An instance of the Message class can be constructed with a Data object it must contain.
The method toXMLString() generates its XML string representation. A Message ob-
ject can also be instantiated from a string value using the Message(String) constructor.
The Message class gives access to the data member through an accessor method. Both
constructors throw an InvalidMessageException if the Data object is not valid or
if the XML element does not represent a valid Message object. The exception declares a
constructor with an Exception typed parameter that is regarded as the cause of the former.
A Message object generates its XML string by first creating an XML document. Then,
the XML element created by the member Data object is added to it. The generated string
value is a representation of this XML document. The other way around, an XML document is
constructed by parsing the string value. The element representing the Data object is passed
to the Data class constructor and the instantiated Data object is assigned to the member of
the Message object.
The constructor is invoked using Java Reflection. The Class object of the member Data
object is instantiated using its name. Therefore, the XML element representing the Data

CHAPTER 2. AN INTERACTION ARCHITECTURE FOR DISTRIBUTED INFORMATION SYSTEMS 13

+Message(data : Data)

+Message(xml : String)

+getData() : Data
+toXMLString() : String

-data : Data

Message «exception»

InvalidMessageException

+Data(data : Element)

+toXML(name : String) : Element

Data

Figure 2.6: The Message class is used to transform Data objects into XML strings and
vice versa.

object must have an attribute holding the class name. The Message class defines a
method toXMLString(boolean) taking a boolean value controlling whether the con-
tained Data objects shall contain this attribute or not. Unnecessary information transfer can
be avoided if a message does not have to be reconstructible.
Figure 2.7 illustrates a request-response-interaction between a local and a remote request han-
dler. The local handler creates a message containing the Request object (a) and sends its
XML string representation to the remote handler (b). There the Message object is recon-
structed from the string value (c) and the Request object extracted (d). The Response
object resulting from the request processing is wrapped in a message (e) and its XML string
representation returned to the local handler (f) where the message is reconstructed and the
response is extracted.

a

b c d e

f

+handleRequest(request : Request) : Response

«interface»

LocalRequestHandler

+handleRequest(request : String) :String

«interface»
RemoteRequestHandler

+Message(data : Data)

+Message(xml : String)

+getData() : Data
+toXMLString() : String

-data : Data

Message

Figure 2.7: Request-response-interaction using Message objects.

We have implemented additional RequestMessage and ResponseMessage classes ex-
tending the Message class. A request message contains user information, while a response
message features additional information about the processing of the request. We present these
messages in Sect. 3.3.

14 2.5. PROTOCOL SCHEMA DEFINITIONS

2.5 Protocol Schema Definitions

The fifth component of our interaction architecture deals with the string representation of
Message objects. It defines schemas — according to which Data and Message objects
are encoded with XML elements — and classes that allow conversions of any type of object
from and to XML elements.
Throughout this work we use the Jdom XML library [7] to implement the XML functionality.
When we use the term element we refer to the class org.jdom.Element.
Figure 2.8 is a graphical schema definition for XML documents created by Message ob-
jects. The root element message contains one element called data which is generated by
the member Data object to represent itself. The XML representation of the Data object
conforms to a separate schema definition. In Fig. 2.9 we give an example XML document
conforming to the schema definition for message representation. The content of the Data
object element is collapsed. Such a document is sent as string value between local and remote
handlers.

messageType

message data

request

response

Figure 2.8: XML schema definition for the XML representation of a Message object.

 <?xml version="1.0" encoding="UTF-8" ?>
 <message>

 <data class="org.ximtec.iserver.p2p.architecture.data.Response">
 </message>

Page 1 of 1

5/9/2005file://C:\Documents and Settings\alex\My Documents\Thesis\CollaborativeIS\Documentatio...

Figure 2.9: Example XML document representing a Message object according to the
schema definition.

A Data object creates the XML element representing itself. For this purpose it follows a
schema in which elements representing its member objects are assembled into one root ele-
ment. The root element representing a Data object contains an attribute holding the class
name of the data object. This is a requirement from the Message class that uses Java Reflec-
tion to reconstruct its member data. The Data class also has a toNonJavaXML(String)
method which takes the result of toXML(String) containing the class name and removes
this attribute. A Data object cannot be reconstructed from such an element but if this is not
a requirement we can avoid including unnecessary information.
The Request class is an abstract class and thus its schema is only defined for its imple-
mentations. We will present a request schema definition with the implementations of our

CHAPTER 2. AN INTERACTION ARCHITECTURE FOR DISTRIBUTED INFORMATION SYSTEMS 15

architecture for iServer in Chapt. 3.
The response schema is shown in Fig. 2.10. A root element contains a child element repre-
senting the member object. The child element for the member is generated by the marshaler
class for the member object type. Figure 2.11 is an example element representing a response
containing an integer object.

responseType

response jdomElement

Figure 2.10: XML schema definition for a response element.

 <?xml version="1.0" encoding="UTF-8" ?>
 <response class="org.ximtec.iserver.p2p.architecture.data.Response">
 <integer>3</integer>

 </response>

Page 1 of 1

5/9/2005file://C:\Documents and Settings\alex\My Documents\Thesis\CollaborativeIS\Documentatio...

Figure 2.11: Example XML document representing a response according to the schema defi-
nition.

Common to all data implementations is the fact that they must all be able to obtain XML
elements representing their member objects and to create the member objects from XML
elements. These conversions from an object of any type to an XML element and vice
versa are carried out by an XML element factory. The factory offers the two methods
fromXML(Element) and toXML(Object) to support these conversions.
For each class of object that is to be represented as XML element and to be reconstructible
from an XML element, there must exist a class that extends org.jdom.Element. This
class offers a constructor that takes the object to be represented as XML element. It also has a
static method taking an XML element as argument and returning a corresponding object. This
method is called unmarshal(Element). We refer to this class extending the Element
class as marshaler for a particular class of objects. In Fig. 2.12 we give a pseudo UML defi-
nition for marshaler classes Jdom[Class]Element where the square brackets denote
any object type name. For example, if we want to have integer objects as members of Data
objects, we implement a JdomIntegerElement class that has a constructor taking an in-
teger object as argument and a static method taking an XML element and returning an integer
object.
We have implemented marshaler classes for Java primitive types and String objects. Fig-
ure 2.13 shows the XML schema definition for these marshalers. Their content is of type
String and they do not have any attributes. More marshaler classes specific to iServer
are presented in Sect. 3.4. Figure 2.14 shows an example XML document as generated by a
JdomIntegerElement object.
The XML element factory is basically no more than a registry (Hashtable) for object

16 2.6. ASSEMBLY OF THE COMPONENTS AND EVALUATION OF THE ARCHITECTURE

Element

+Jdom[Class]Element(object : [Class])

+unmarshal(element : Element) : [Class]

Jdom[Class]Element

«exception»

NotRegisteredException

«exception»

MalformedXMLException

+fromXML(element : Element) : Object

+toXML(object : Object) : Element

XMLElementFactory

Figure 2.12: XML element factory and pseudo marshaler class.

classes and their marshaler classes. When the method toXML(Object) is called, the fac-
tory looks up the marshaler class registered for the type of the object given as argument
and returns a new instance of it representing the object as XML element. The method
fromXML(Element) looks up the marshaler registered with the name of the XML ele-
ment and returns the result of the static unmarshal(Element) method invoked on this
class. The look up key for the retrieval of the marshaler class when marshaling is the class
name of the object to be marshaled. For unmarshaling an XML string into an object, the
marshaler class is retrieved with the XML element name. Since the element name does not
necessarily correspond to the class name we need to register marshalers with both keys. The
factory throws a NotRegisteredException if a marshaler class cannot be found for a
given key.
Figure 2.15 illustrates the process of marshaling and unmarshaling initiated by Data objects
requested to convert themselves to and from XML elements by the message object. For
each member object that is to be added to the root element representing the Data object,
the factory is used to get the representing XML element (b). Similarly for unmarshaling,
the Data object uses the factory to unmarshal each element representing an object (a) and
assigns it to the respective member.

2.6 Assembly of the Components and Evaluation of the Architec-
ture

Figure 2.16 summarises our interaction architecture graphically. The time line goes from top
to the bottom. In a local system the request factory is used to create a Request object which
is handed over to the local request handler. The handler creates a Message object containing
the request and sends its XML string representation to the remote request handler. There the
message is reconstructed from the string value received and the Request object extracted.
The remote request handler initiates the processing of the request which is carried out by the

CHAPTER 2. AN INTERACTION ARCHITECTURE FOR DISTRIBUTED INFORMATION SYSTEMS 17

jdom[Class]Element

boolean

byte

character

double

float

integer

long

short

string

Figure 2.13: Marshaler classes for Java primitive types.

<?xml version="1.0" encoding="UTF-8" ?>

<integer>3</integer>

Figure 2.14: XML representation of a JdomIntegerElement object.

Request object itself. The resulting Response object is wrapped in another Message
object and its XML string representation is returned to the local response handler. Note that
in this constellation we use a response handler handling the response instead of letting the
local request handler receive and return the response message itself.

2.6.1 Essentials of the Components

In this section we outline the advantages of using our interaction architecture. We point
out the essential details of each of the five components which make a service implemented
according to our architecture flexible and extensible.

Request Factory

The request factory must create objects that are subtypes of the Request class. The
Message class used to wrap the request and the remote request handler initiating the re-

18 2.6. ASSEMBLY OF THE COMPONENTS AND EVALUATION OF THE ARCHITECTURE

+Data(data : Element)

+toXML(name : String) : Element

Data

a
b

+fromXML(element : Element) : Object

+toXML(object : Object) : Element

XMLElementFactory

Figure 2.15: Interaction between Data objects and the XML element factory.

quest processing rely on the methods specified by the Data and Request classes. As long
as the requests created by the factory comply to these specifications, all other components are
not affected by any changes to the factory.

Handling

Handlers rely on the methods specified by the Request and Message classes only. This
makes them independent both from possible subtypes implementing arbitrary requests and
from the database API. Handlers take care of service framework specific requirements such
as locating a remote handler and transmitting XML strings. Thus, we can create any service
by implementing respective handlers that define interface methods using Data and String
parameter and return types. If this condition is fulfilled, all other components are independent
from the service used for interaction.
Handlers are also responsible for collecting the Data objects required to construct a
Message object and to extract and handle this information before initiating the request
processing. They must therefore be adapted if specialised messages containing additional
information are used.
For example, we might want to transmit user information along with a request. Since a local
response handler is most likely to be used by one user only, we could implement its construc-
tor taking the user information as argument and assigning it to a private member. The user
information would not have to be provided with every request and the handler could auto-
matically transmit it along with any request. The handler would use a specific Request-
Message class that has additional functionality to add and extract the user information. The
remote request handler would be adapted to use the same specific message class to recon-
struct a Message object from the XML string received and to handle the additional user
information.

Request and Response

The Request and Response classes encapsulate the interaction with the remote infor-
mation system. Implementations specific to a particular database API and request pattern
must implement the methods specified by the Request, Response and their superclass. If
this condition is satisfied, any request and response implementation can be used, exchanged
and extended without any further adaptations of other components. We can transmit addi-
tional information to the remote system by implementing specific Data and corresponding
Message classes.
In the previous example — where we supply the remote system with additional user infor-

CHAPTER 2. AN INTERACTION ARCHITECTURE FOR DISTRIBUTED INFORMATION SYSTEMS 19

mation when transmitting a request — we would create a new subtype User of the Data
class since the user object is to be transmittable using the Message class. This new subtype
contains all the user information as members and uses the XML element factory to convert
them from and to XML elements when requested.

Messaging

The messaging component is responsible to convert a Request and Response object from
and to an XML string. The handlers use this functionality to transmit Data objects. The han-
dlers mainly rely on the toXMLString() method and Message(String) constructor
to send and receive Data objects. A message contains all the information that is transmitted
to a remote system. If we want to send additional information we implement subtypes of the
Message class containing additional members of type Data and corresponding constructor
and accessor methods.
To pursue our previous example of providing the remote system with additional user
information we describe the respective Message subclass. We would implement a
RequestMessage class extending the Message class and thus ensuring the availability
of the toXMLString() method and Message(String) constructor. The Request-
Message class takes the user information as additional argument of its constructor and de-
fines a corresponding member. The user information must be a subtype of the Data class to
ensure to and from XML conversions.

Protocol Schema Definitions

The protocol schema definitions and XML element factory formalise the conversion from and
to XML elements and string values. The factory and marshaler classes allow a Data class
to define arbitrary types of objects as members and still be able to easily convert itself from
and to an XML element. The XML schema according to which members of Data classes
are converted can be exchanged by adapting the respective marshaler class. Such changes do
not entail adaptations of any other components in our architecture.
The Message class creates its representing XML document and assembles the elements rep-
resenting its member objects according to its XML schema definition. It relies on this schema
for its reconstruction from an XML string. The creation of new subtypes of the Message
class requires the designing of new XML schema definitions and changes to an XML schema
definition require adaptations to the Message class only. All other components stay unaf-
fected by changes to XML schema definitions.
To complete our example with the additional user information we name the adaptations re-
quired to the protocol schema component of our architecture. Firstly, we have a new subtype
of the Data class containing the user information as member. Since this subtype must be
able to generate an XML element from which it can reconstruct itself using the XML element
factory, we would have to implement the marshaler class specific to its member types and
register it with the factory. Secondly, we have a new subtype of the Message class which
requires XML schema definitions. According to these schema definitions, the root element
representing a Request message would now contain two elements, one representing the
Request object and the other one representing the User object.

20 2.6. ASSEMBLY OF THE COMPONENTS AND EVALUATION OF THE ARCHITECTURE

2.6.2 Possible Adaptations

To conclude this section we list all possible adaptations that can be conducted on a service
implemented according to our interaction architecture:

Service

The service (e.g. web service, peer-to-peer service) can be changed by providing the handlers
specifying interface methods that use Data and String parameter and return types.

Database API

The database API can be changed by providing subclasses of the Request and Response
classes defined in our architecture. Additionally, the request factory must be adapted such
that it creates these Request objects.

Request Pattern

The request pattern can be exchanged by providing the Request classes that implement the
abstract method computeResponse() method. The request factory must be adapted so
that it creates these Request objects.

Database Schema

The schema describing the information entities and relationships stored in an information
system can be changed by adapting the request factory.

XML Schema Definitions

Changes to the XML representation of objects transmitted can be performed by adapting the
marshaler classes. No further adaptations are required.

Exchange of Additional Information

The most complex adaptations have to be carried out when additional information has to be
transmitted between local and remote request handlers. First we need to define a subtype of
the Message class that contains the additional members and declares respective constructor
and accessor methods. Second we define the subclass of the Data class that wrap the ad-
ditional information so that it can be wrapped in a message. In third place we must design
the XML schema definition according to which the new Message and Data type is con-
verted from and to XML representation. Finally, the handlers must be adapted to provide the
additional information when constructing the Message object and to extract and handle the
additional information after reconstructing the message.

CHAPTER 2. AN INTERACTION ARCHITECTURE FOR DISTRIBUTED INFORMATION SYSTEMS 21

ChannelChannel RemoteRemoteLocalLocal

RequestFactory.[Database API Call]()

LocalRequestHandler.handleRequest()

Request

RequestMessage

RemoteRequestHandler.handleRequest()

RequestMessage

ResponseMessageXMLStringResponseMessage

XMLString

ResponseHandler.handleResponse()

Database API Database API

Figure 2.16: Workflow in a service implementing our interaction architecture.

22 2.6. ASSEMBLY OF THE COMPONENTS AND EVALUATION OF THE ARCHITECTURE

3
Distributed iServer

In this section we introduce the implementation of our interaction architecture for iS-
erver [14]. We present the details of each component. As we have stated in Sect. 2.2, handlers
are specific to a particular service framework. In this section we describe a service framework
independent implementation of a distributed iServer, thus, we present handler implementa-
tions for web and peer services in the respective Chapt. 4 and 5.

3.1 Request Factory

The request factory for iServer replicates the methods defined by the iServer API. For each
of these methods there is a factory method returning a Request object representing the
respective API method. The processing of a Request object returns a Response object
containing the return value of the method invocation. Figure 3.1 shows the UML diagram of
the RequestFactory class listing all supported iServer API methods.
A request factory can be implemented specific to arbitrary requirements offering a set of
request methods. In this example factory every request corresponds to exactly one iServer
API method. A request could also represent a higher level operation combining both arbitrary
and multiple API method calls.
Parameter objects required to some of these factory methods will be sent to the remote request
handler along with the request. Since we do not assume object identity in the local and
remote iServer database, the parameter objects received by the remote request handler must
first be matched with an object in the remote database without the use of object IDs. The
matching procedure is encapsulated in the unmarshaler classes for iServer specific types such
as Entity, User etc. The object created by the unmarshaler registered for its type is either
an object contained in the remote database or a temporary object for which no matching
objects could be found.

23

24 3.2. DATA

+iServerCollectionEntities() : ReflectionQuery
+iServerCollectionResources() : ReflectionQuery
+iServerCollectionSelectors() : ReflectionQuery
+iServerCollectionLinks() : ReflectionQuery
+iServerCreateLink(name : String) : ReflectionQuery
+iServerCreateLink(name : String, source : Entity, target : Entity, creator : Individual) : ReflectionQuery
+iServerCreateSelector(name : String, layer : Layer, resource : Resource, creator : Individual) : ReflectionQuery
+iServerDeleteLink(link : Link) : ReflectionQuery
+iServerDeleteResource(resource : Resource) : ReflectionQuery
+iServerDeleteSelector(selector : Selector) : ReflectionQuery
+entityGetAuthorisedIndividuals(instance : Entity) : ReflectionQuery
+entityGetAuthorisedUsers(instance : Entity) : ReflectionQuery
+entityGetCreator(instance : Entity) : ReflectionQuery
+entityGetName(instance : Entity) : ReflectionQuery
+entityGetProperties(instance : Entity) : ReflectionQuery
+entityGetProperty(instance : Entity, key : String) : ReflectionQuery
+entityGetUnauthorisedUsers(instance : Entity) : ReflectionQuery
+entityRemoveAuthorisedUser(instance : Entity, user : U ser) : ReflectionQuery
+entityRemoveProperty(instance : Entity, key : String) : ReflectionQuery
+entityRemoveUnauthorisedUser(instance : Entity, user : User) : ReflectionQuery
+entitySetCreator(instance : Entity, creator : Individual) : ReflectionQuery
+entitySetName(instance : Entity, name : String) : ReflectionQuery
+entitySources(instance : Entity) : ReflectionQuery
+linkAddSource(instance : Link, source : Entity) : ReflectionQuery
+linkAddTarget(instance : Link, target : Entity) : ReflectionQuery
+linkGetLinkBySource(source : Entity) : ReflectionQuery
+linkGetLinkByTarget(target : Entity) : ReflectionQuery
+linkGetSource(instance : Link) : ReflectionQuery
+linkGetTarget(instance : Link) : ReflectionQuery
+linkRemoveSource(instance : Link, source : Entity) : ReflectionQuery
+linkRemoveTarget(i nstance : Link, targ et : Entity) : ReflectionQuery
+resourceGetSelectors(instance : Resource) : ReflectionQuery
+resourceGetSelectors(instance : Resource, minLayer : Layer, maxLayer : Layer) : ReflectionQuery
+resourceAddSelector(instance : Resource, selector : Selector) : ReflectionQuery
+resourceRemoveSelector(instance : Resource, selector : Selector) : ReflectionQuery
+selectorGetLayer(instance : Selector) : ReflectionQuery
+selectorGetResource(instance : Selector) : ReflectionQuery
+selectorSetLayer(instance : Selector, layer : Layer) : ReflectionQuery

QueryFactoryIServer

Entity

Link

Resource

Selector

Individual

Layer

User

Figure 3.1: iServer Request Factory

3.2 Data

Figure 3.2 shows the UML diagrams of the abstract Data class and subtypes. The Data
class specifies the methods required to generate an XML representation and to reconstruct
a Data object from an XML element. Because it is impossible to define an abstract con-
structor method we defined an abstract fromXML(Element) method and implemented the
Data(Element) constructor so that it invokes this abstract method.
Another implementation detail concerns the Response class. Since a Response object
is designed to wrap an object of any type, the respective constructor takes an argument of
type Object. Because the object to be wrapped may point to a null value, e.g. as a result
of an iServer API method call, we have to consider the case when this constructor is called
with a null value argument. In this case Java is unable to determine the constructor to be
used by the argument object type and it chooses the most specific constructor which is the
one for reconstruction from an XML element. To avoid this we define the constructor taking
an object to be wrapped to have a second parameter of type boolean. In order to render this
second parameter more useful than just for discerning the two constructor methods we use

CHAPTER 3. DISTRIBUTED ISERVER 25

+Data()

+Data(xml : Element)

+toXML(name : String) : Element
#fromXML(xml : Element)

Data

+Request()

+Request(xml : Element)

+toXML(name : String) : Element

#fromXML(xml : Element) : void
+computeResponse() : Response

Request

+Response(object : Object, nullAllowed : Boolean)

+Response(xml : Element)

+toXML(name : String) : Element

#fromXML(xml : Element) : void
+getObject() : Object

-object : Object

Response

«exception»

InvalidDataException

+User(user : Object, nullAllowed : Boolean)

+User(xml : Element)

+toXML(name : String) : Element
#fromXML() : void

User

+Status(code : int, message : String)

+Status(xml : Element)

+toXML(name : String) : Element

#fromXML(xml : Element) : Element

-code : int

-message : String

Status

Figure 3.2: Data Implementation

26 3.2. DATA

+Request()

+Request(xml : Element)

+toXML(name : String) : Element
#fromXML(xml : Element) : void

+computeResponse() : Response

Request

+ReflectionQuery(inst : Object, op : Method, params : Object[])

+ReflectionQuery(query : Element)

+toXML(name : String) : Element

#fromXML(query : Element) : void
+computeResponse() :Response

-instance : Object

-operation : Method

-parameters : Object[]

ReflectionQuery

+getResponse() : OMInstanceResult

OMInstanceQuery

+getResponse() : OMCollectionResult

OMCollectionQuery

Figure 3.3: Request Implementation

the boolean value to determine whether a null value for the first parameter should be allowed.
If the argument is true null values are allowed. If it is false the first argument is not allowed
to be a null value and if it is, an exception is thrown. For all Data objects used to wrap the
result of an iServer API method call this second argument is set to true.
In Fig. 3.3 we give the iServer specific subclasses of the abstract Request class. A
ReflectionQuery object encapsulates all the data necessary to perform a method in-
vocation using Java Reflection. This data consists of a method object, an array containing the
parameter objects of the method and an object representing the instance on which the method
is to be invoked. If the method is static the instance object points to a null value. If the method
has no parameters, the array of parameter objects is of length zero.
The ReflectionQuery object can be constructed from a method object, instance object
and an array of parameter objects. An XML element representing the query is generated by
the toXML(String) method. A query can also be constructed from such an XML ele-
ment. Finally, the method processQuery() executes the method invocation and returns
its return value.
This class is a straightforward approach to represent an iServer API method call with a
Request object. It can also be used to encode the invocation of an arbitrary method on any
object. Thus, the request factory can construct a Request object representing any method
call. We have also implemented another request pattern that is based on selection and inter-
sect operations which can be nested. Since this approach circumvents the iServer API we no
longer pursued it. Nevertheless, we discuss it in Appendix C.
In the following paragraph we explain the ReflectionQuery subtypes OMInstanceQuery

CHAPTER 3. DISTRIBUTED ISERVER 27

+Response(object : Object, nullAllowed : Boolean)

+Response(xml : Element)

+toXML(name : String) : Element
#fromXML(xml : Element) : void

+getObject() : Object

-object : Object

Response

+OMInstanceResult(response :OMInstance)

+OMInstanceResult(response : Element)

+getResponse() : OMInstance

OMInstanceResult

+OMCollectionResult(response : OMCollection)

+OMCollectionResult(response : Element)

+getResponse() : OMCollection

OMCollectionResult

Figure 3.4: Response Classes

and OMCollectionQuery. For the response encoding we had to make only little exten-
sions to the classes provided by our architecture. The Response class defines a member of
type Object which is used for storing the Response object. iServer API methods return
three different types of objects: String values, OMInstance and OMCollection objects.
If the return value is of type OMInstance or OMCollection we want to avoid casting
operations when accessing the Response object. Hence we implemented subclasses of the
Response class that perform the cast inside the getResponse() method and return the
object typed accordingly. The OMCollectionResult returns an OMCollection object
and the OMInstanceResult returns an OMInstance object.
Since it is the Request object that constructs and returns the Response object, we created
subtypes of the ReflectionQuery class specific to the return type of the method invo-
cation. The OMCollectionQuery returns an OMCollectionResult object and the
OMInstanceQuery returns an OMInstanceResult object. The request factory method
constructing a Request object knows what type of object a particular request returns. Each
factory method constructs a Request object corresponding to the result type of the iServer
API method it represents.
In the next section we present request and response messages that extend the Message
class. A request message provides the remote request handler with user information and the
response message contains information about the outcome of the request processing. This
information requires additional members to the one defined in the Message class. Since
these members must be convertible to and from XML elements we implemented two addi-
tional classes extending the Data class. Figure 3.2 shows the UML diagram for the User
and Status classes. At the moment a User object contains an object of any type e.g. a
string value representing a name. For a full integration with the iServer user management

28 3.3. MESSAGING

this object should point to an iServer user. For the same reason as in the Response class
its constructor taking a parameter of type Object has the additional boolean argument. In
the iServer peer service introduced in Chapt. 5 User objects are compared to avoid multiple
responses by the same user. The User class thus overrides the equals(Object) method
by delegating the equality request to its member object representing the user. A Status
object contains an integer value representing a code, e.g. zero for successful processing etc.
and an XML string representing a message.

3.3 Messaging

We implemented additional classes extending the Message class. The reason is that we
wanted to provide the remote request handler with user information when sending a request.
Also, the message containing the response should be enriched with status information about
the outcome of the request processing. In the previous section we introduced the respective
Data subclasses. In this section we present the implementation of the Message class as
well as the UserMessage, UserRequestMessage, ResponseMessage and User-
ResponseMessage classes. All classes are shown in Fig. 3.5.
For the reason given in Sect. 3.2, we added an abstract fromXML(Element) method to the
Message class that allows to stipulate a constructor taking an XML element as argument
within the Message superclass while implementing the construction from an XML element
within its subclasses.
The UserMessage class extends the Message with one additional Data member. Its
constructor and the getter method for this member require this object to be of type User and
cast the return value to this type, respectively.
In order to determine the amount of access granted to a user requesting a remote database,
a User object must always be included in a request message. Hence, we implemented a
UserRequestMessage that extends the UserMessage class. It defines an additional
getRequest() method that casts the Data object returned by the Message superclass
accessor to a Request type.
We implemented a response message extending the base message with information about
the outcome of the request processing. The additional member is of type Status and a
constructor and accessor methods are defined accordingly. Similarly to the request message,
an accessor method getResponse() avoids a cast when retrieving the Response object.
Sometimes information about the user responding must be included in the response message
as well, e.g. in a peer service where multiple peers may respond to a single request. Thus
we implemented a UserResponseMessage class that contains a User object as well as
the constructor and accessor methods ensuring that the Data member of the Message su-
perclass is of type Response. Since Java does not support multiple inheritance, we decided
to make it a subtype of the UserMessage and to replicate the constructor and accessor
methods from the ResponseMessage class.

3.4 Protocol Schema Definitions and Marshaling

Figure 3.6 shows the UML definitions for the XML element factory and the marshaler classes.
In addition to the marshaler classes for primitive Java types presented in Sect. 2.5, we also im-

CHAPTER 3. DISTRIBUTED ISERVER 29

+Message(data : Data)

+Message(xml : String)

+toXMLString() : String

#fromXMLString(xml : String) : void

+getData() : Data

-data : Data

Message

+UserRequestMessage(request : Request, user : User)

+UserRequestMessage(xml : String)

+getUser() : User

UserRequestMessage

+ResponseMessage(response : Response, status : Status)

+ResponseMessage(xml : String)

+toXMLString() : String

#fromXMLString(xml : String) : void

+getResponse() : Response

+getStatus() : Status

-status : Status

ResponseMessage

+UserMessage(data : Data, in user : User)

+UserMessage(xml : String)

+toXMLString() : String

#fromXML(xml : String) : void

+getUser() : User

-user : User

UserMessage

+UserResponseMessage(response : Response, user : User, status : Status)

+UserResponseMessage(xml : String)

+toXML() : String

#fromXML(xml : String) : void

+getResponse() : Response

+getStatus() : Status

UserResponseMessage

Figure 3.5: Messaging Implementation

plemented marshalers for OMInstance and OMCollection classes. Figure 3.7 illustrates
the schema definitions for their XML representation.
The only additional functionality of our OMInstance marshaler compared to the ones de-
fined within the iServer architecture (e.g. JdomEntity, JdomLink etc.) is that it returns
an OMInstance object when unmarshaling as opposed to an OMObject object. Our mar-
shaler uses the JdomFactory implemented within iServer to generate an element repre-
senting the instance object. It wraps this element and stores the instance type name as an
attribute value in order to be able to reconstruct it given the OMObject object returned by
the iServer factory when unmarshaling. Figure 3.8 contains an example OMInstance ele-
ment as generated by the JdomOMInstanceElement marshaler.
An OMCollection marshaler represents an OMCollection object by marshaling all
contained OMInstance objects using our OMInstance marshaler. These elements are
added to the root element representing the collection object. The root element also stores the
member type of the collection as an attribute value. With this attribute the collection can be
reconstructed and populated with the unmarshaled instance member objects. Figure 3.9 is an
example element representing a collection containing two instance object representations.

30 3.4. PROTOCOL SCHEMA DEFINITIONS AND MARSHALING

+toXML(object : Object) : Element

+fromXML(element : Element) : Object

+register(className : String, elementName : String, marshalerName : String) : void

-initialise() : void

-marshalers : Hashtable<String, String>

-unmarshalers : Hashtable<String, String>

XMLElementFactory

+Jdom[Class]Element(object : [Class])

+unmarshal(element : Element) : [Class]

Jdom[Class]Element

Element

+JdomOMInstanceElement(omInstance : OMInstance)

+unmarshal(xml : Element) : OMInstance

JdomOMInstanceElement

+JdomOMCollectionElement(omInstance : OMCollection)

+unmarshal(xml : Element) : OMInstance

JdomOMCollectionElement

Figure 3.6: iServer specific implementations of the XMLElementFactory and Marshalers.

Figure 3.10 illustrates the XML schema definitions for XML representations of all subclasses
of the Message class. Each subclass defines an additional member while it inherits the
member(s) of its superclass(es). This inheritance hierarchy is reflected in the XML schema.
In Fig. 3.11 we give an example XML document representing a user request message con-
forming to its schema definition. The Data object represented is a ReflectionQuery
object. The user is represented with a string value containing his name. Both child elements
are collapsed. Figures 3.12 and 3.13 are example XML representations of a response message
and user response message, respectively. All child elements are collapsed.
Now, we define the schema for the XML representation of ReflectionQuery objects.
Figure 3.14 graphically depicts the XML schema definition. The root element has three child
elements: An instanceObject element contains the instance object on which the method
is to be invoked as generated by our element factory. The names of the parameter classes are
stored in a second element parameterClasses. A third element parameterObjects
contains the parameter instances as generated by our element factory. The name of the class of
the object on which the method is to be invoked and the method name are stored as attributes
of the root element. Figure 3.15 shows an example XML representation of a reflection query
object. The method to be invoked is called intValue() and it is declared by the Integer
class. The method is to be invoked on an instance representing the integer value 3.

CHAPTER 3. DISTRIBUTED ISERVER 31

jdom[Class]Element

omCollectionType

omCollection

0..

omInstance

omInstanceType

omInstance iServerOMInstanceElement

Figure 3.7: XML schema definition of marshaler classes for OMInstance and OMCollection
objects.

At the moment, a User object is represented in XML as defined in the schema definition
illustrated in Fig. 3.16. The root element contains one child that represents the member
of type Object as generated by its marshaler class. Figure 3.17 shows an example XML
document representing a User object. Its member object is of type String and contains
the name of the user.
The XML representation of a Status object follows the schema definition shown in
Fig. 3.18. The root element contains two child elements representing an integer and string,
respectively. The JdomIntegerElement and JdomStringElement classes are used
to marshal and unmarshal these members. Figure 3.19 is an example XML representation of
a Status object. The integer is set to zero and the string contains a message.

32 3.4. PROTOCOL SCHEMA DEFINITIONS AND MARSHALING

<?xml version="1.0" encoding="UTF-8" ?>

<omInstance omInstanceName="entity">

<entity>

<name>African Savannah</name>

<creator>

<individual>

<name>Beat Signer</name>

<description />

<login>signer</login>

<password>signer</password>

</individual>

</creator>

<authorised />

<unauthorised />

<properties />

</entity>

</omInstance>

Figure 3.8: Example XML document representing an OMInstance object created by its
marshaler class.

<?xml version="1.0" encoding="UTF-8" ?>

<omCollection omTypeName="entity">

<omInstance omInstanceName="entity">

<omInstance omInstanceName="entity">

</omCollection>

Figure 3.9: Example XML element representing an OMCollection object as generated by
the OMCollection marshaler.

CHAPTER 3. DISTRIBUTED ISERVER 33

messageType

message data

responseMessageType

responseMessage status

userMessageType

userMessage user

userRequestMessage

userResponseMessageType

userResponseMessage status

Figure 3.10: XML schema definitions for elements representing a user subtype implementa-
tions of Message.

 <?xml version="1.0" encoding="UTF-8" ?>
 <message>

 <user class="org.ximtec.iserver.p2p.data.User">
 <data class="org.ximtec.iserver.p2p.data.ReflectionQuery"

className="java.lang.Integer" methodName="intValue">
 </message>

Page 1 of 1

5/9/2005file://C:\Documents and Settings\alex\My Documents\Thesis\CollaborativeIS\Documentatio...

Figure 3.11: Example XML document representing a user request message.

 <?xml version="1.0" encoding="UTF-8" ?>
 <message>

 <status class="org.ximtec.iserver.p2p.data.Status">
 <data class="org.ximtec.iserver.p2p.architecture.data.Response">

 </message>

Page 1 of 1

5/9/2005file://C:\Documents and Settings\alex\My Documents\Thesis\CollaborativeIS\Documentatio...

Figure 3.12: Example XML document representing a response message.

34 3.4. PROTOCOL SCHEMA DEFINITIONS AND MARSHALING

 <?xml version="1.0" encoding="UTF-8" ?>
 <message>

 <user class="org.ximtec.iserver.p2p.data.User">
 <status class="org.ximtec.iserver.p2p.data.Status">
 <data class="org.ximtec.iserver.p2p.architecture.data.Response">

 </message>

Page 1 of 1

5/9/2005file://C:\Documents and Settings\alex\My Documents\Thesis\CollaborativeIS\Documentatio...

Figure 3.13: Example XML document representing a user response message.

request

reflectionQueryType

reflectionQuery

instanceObjectType

instanceObject jdom[Class]Element

parameterClassesType

parameterClasses

0..

parameterClass

parameterObjectsType

parameterObjects

0..

jdom[Class]Element

Figure 3.14: XML schema definition for elements representing a reflection query object.

 <?xml version="1.0" encoding="UTF-8" ?>
 <request class="org.ximtec.iserver.p2p.data.ReflectionQuery"

className="java.lang.Integer" methodName="intValue">
 <parameterClasses />
 <parameterObjects />
 <instanceObject>
 <integer>3</integer>

 </instanceObject>
 </request>

Page 1 of 1

5/9/2005file://C:\Documents and Settings\alex\My Documents\Thesis\CollaborativeIS\Documentatio...

Figure 3.15: Example XML element representing a reflection query object.

CHAPTER 3. DISTRIBUTED ISERVER 35

userType

user jdom[Class]Element

Figure 3.16: XML schema definition for elements representing a User object.

 <?xml version="1.0" encoding="UTF-8" ?>
 <user class="org.ximtec.iserver.p2p.data.User">
 <string>Vector Covar</string>

 </user>

Page 1 of 1

5/9/2005file://C:\Documents and Settings\alex\My Documents\Thesis\CollaborativeIS\Documentatio...

Figure 3.17: Example XML document representing a User object.

statusType

status

integer

string

Figure 3.18: XML schema definition for elements representing a Status object.

 <?xml version="1.0" encoding="UTF-8" ?>
 <status class="org.ximtec.iserver.p2p.data.Status">
 <integer>0</integer>
 <string>request processed successfully</string>

 </status>

Page 1 of 1

5/9/2005file://C:\Documents and Settings\alex\My Documents\Thesis\CollaborativeIS\Documentatio...

Figure 3.19: Example XML document representing a Status object.

36 3.4. PROTOCOL SCHEMA DEFINITIONS AND MARSHALING

4
Implementation of an

iServer Web Service

In this section we present our implementation of a web service for iServer. We outline the
technologies we use and point out the components of our architecture that have been cus-
tomised for web services.

4.1 Axis Web Service Framework

The axis web service framework can be regarded as a formalised employment of Java RMI
technology [8]. The programmer avoids creating the necessary classes and interfaces such
as the skeleton, stub, service locater etc. The axis framework is able to create the classes
necessary for an implementation of a client server application based on RMI. The classes are
created from the interface definition of a web service implementation. We include a step by
step example implementation of a web service in Appendix B which is a good introduction
to the Axis web service framework [1].
An axis web service runs as a servlet on a Tomcat server [2]. The service can be reached
through a port set in the Tomcat preferences. A client uses the generated service locater
class to create a local object allowing remote method invocations. Hence the web service is
accessed with a regular method invocation in the client implementation.

4.2 Web Service Specific Components and Workflow

For a web service there is nothing to provide for the client side, hence, there is no web
service implementation of a local request handler. A client has to implement the local handler
functionalities on its own. The parameter objects of the iServer API method to be called
must be prepared, marshaled and serialised. iServer API methods take either OMInstance
objects or string values as arguments. For OMInstance arguments, the client must create an

37

38 4.2. WEB SERVICE SPECIFIC COMPONENTS AND WORKFLOW

XML string conforming to the XML schema definitions for a JdomOMInstanceElement
object described in Sect. 3.4. String parameters are used without any further processing.
The result of a web service method invocation is a ResponseMessage object containing
the Response and Status object. In Sect. 2.5 we describe the XML representation of
Data objects which includes Response objects. In a web service we do not want to include
any Java specific information into the XML representation of a response. Thus, the response
is encoded without the attribute holding the class name of the Response object.
The only web service specific component is an implementation of the web service interface.
There are two possibilities to make iServer API methods accessible remotely:

• The interface defines one general method taking an XML string representation of
a Request object as argument. This parameter object uniformly encapsulates the
method to be called which is why one interface method is enough to handle all API
methods.

• The other possibility is to define an interface method for each API method available as
web service. In this case there is no need to encode the method to be called since the
client chooses the corresponding web service method directly. The second approach
makes it easier for the client to use the web service because there is less XML code to
be generated.

We decided to define and implement a web service method for each iServer API method
offered as web service. The interface currently offers all methods defined in the iServer API.
This is not a necessity and the service interface could offer access to the remote database
consisting of any subset of the API methods.
Figure 4.1 shows the UML definition of the web service interface. There is a corresponding
interface method for each iServer API method. This interface can be regarded as the web
service specific implementation of a RemoteRequestHandler as defined in our interac-
tion architecture. The difference is that the handleRequest(Data) takes Data objects
as argument as opposed to the request handling web service methods. The similarity is that
both return Data objects wrapped with a Message object.
Figure 4.2 shows the implementation of an example web service interface method. In a first
step, the object on which the method is to be called is deserialised and unmarshaled from
the XML string received as argument. If the method to be called requires parameter objects,
these would be prepared in a similar way. Then the iServer API method is invoked and its
return value wrapped with a Response object. The latter is marshaled and serialised using a
Message object and its XML string representation is returned to the requesting client. Note
that in this example we do not return a ResponseMessage object to keep the example
code short.
Figure 4.3 schematically illustrates the interaction in a web service. The remote request
handler — i.e. the web service interface — currently replicates the methods of the iServer
API. The string values are serialisations of XML elements representing the parameter objects
of an invoked web service method. An XML document is built from these XML strings in
the handler method, i.e. in the implementation of the web service interface method that is
invoked. The XMLElementFactory is used to unmarshal the element (a and b). The web
service method retrieves the response using iServer API methods of the remote database (c
and d). The result is wrapped with a Response object which is wrapped with a Response-

CHAPTER 4. IMPLEMENTATION OF AN ISERVER WEB SERVICE 39

+iServerCollectionEntities() : String
+iServerCollectionResources() : String
+iServerCollectionSelectors() : String
+iServerCollectionLinks() : String
+iServerCreateLink(name : String) : String
+iServerCreateLink(name : String, source : String, target : String, creator : String) : String
+iServerCreateSelector(name : String, layer : String, resource : String, creator : String) : String
+iServerDeleteLink(link : String) : String
+iServerDeleteResource(resource : String) : String
+iServerDeleteSelector(selector : String) : String
+entityGetAuthorisedIndividuals(instance : String) : String
+entityGetAuthorisedUsers(instance : String) : String
+entityGetCreator(instance : String) : String
+entityGetName(instance : String) : String
+entityGetProperties(instance : String) : String
+entityGetProperty(instance : String , key : String) : String
+entityGetUnauthorisedUsers(instance : String) : String
+entityRemoveAuthorisedUser(instance : String, user : String) : String
+entityRemoveProperty(instance : String, key : String) : String
+entityRemoveUnauthorisedUser(instance : String, user : Str ing) : Str ing
+entitySetCreator(instance : String, creator : String) : String
+entitySetName(instance : String , name : String) : String
+entitySources(instance : String) : String
+linkAddSource(instance : String, source : String) : String
+linkAddTarget(instance : String, targ et : String) : String
+linkGetLinkBySource(source : String) : String
+linkGetLinkByTarget(target : String) : String
+linkGetSource(instance : String) : String
+linkGetTarget(instance : String) : String
+linkRemoveSource(instance : String, source : String) : String
+linkRemoveTarget(instance : String, target : String) : String
+resourceGetSelectors(instance : String) : String
+resourceGetSelectors(instance : String , minLayer : String, maxLayer : String) : String
+resourceAddSelector(instance : String, selector : String) : String
+resourceRemoveSelector(instance : String , selector : String) : String
+selectorGetLayer(instance : String) : Single
+selectorGetResource(instance : String) : String
+selectorSetLayer(instance : String, layer : String) : String

IServerWebService

Figure 4.1: iServer Web Service Interface

Message object on his part. The XML string representation of this message is returned to
the client (e).
Figure 4.4 illustrates the workflow initiated by a client calling a web service interface method.
The time line goes from top to the bottom. The client provides the parameter objects repre-
sented as XML strings. The web service interface unmarshals the parameter objects using the
XML element factory. Once all parameter objects are prepared, the respective iServer API
method is invoked. The result is returned to the client as an XML string value.

4.3 Example Usage

Figure 3.8 shows a parameter XML string as provided by a client calling the web
service methods representing the iServer API methods Entity.sources() and

40 4.3. EXAMPLE USAGE

p u b l i c S t r i n g e n t i t y G e t C r e a t o r (S t r i n g e n t i t y S t r) {

/ / d e s e r i a l i s e and unmarsha l s o u r c e
Document doc = b u i l d e r . b u i l d (e n t i t y S t r) ;
Element entityXML = doc . g e t R o o t E l e m e n t () ;
E n t i t y e n t i t y =

(E n t i t y) XMLElementFactory . fromXML (r o o t) ;

/ / que ry DB
Response r e s = e n t i t y . g e t C r e a t o r () ;

/ / marsha l , s e r i a l i s e and r e t u r n r e s p o n s e
Message resMsg = new Message (r e s) ;
re turn resMsg . toXMLString (f a l s e) ;

}

Figure 4.2: Example web service method implementation.

Entity.getCreator(). Both web service methods take one parameter of type
OMInstance, i.e. an entity object.
Figure 4.5 shows the message returned for the invocation of the
entityGetCreator(String) method. The response message contains the cre-
ator object wrapped in a response element. The response message also contains a Status
object.
Figure 4.6 contains the response to the invocation of entitySources(String). The
returned message consists of a Status and OMCollection object containing two
OMInstance objects of type Entity.
Figure 4.7 shows the graphical user interface of the TCP monitor class that ships with the axis
library. The monitor can be set to listen on a particular port and to forward the intercepted
messages to another port. Thus it can be put in between a web service and its client to capture
and display all messages passed. Web services send SOAP messages containing the argument
and return values of the web service method. Though our request and response messages are
formated in XML they are treated as string values, hence all brackets and quotes are encoded
using character entity references such as " and < etc.
Further information about how to get a web service started and running are given in Appen-
dix A.

CHAPTER 4. IMPLEMENTATION OF AN ISERVER WEB SERVICE 41

Remote Request Handler

Database API

Message
XMLString

Parameter Object

a

c

d

e

b

Data

XMLString

XML Element Factory

Figure 4.3: Schematic illustration of the interaction in a web service.

42 4.3. EXAMPLE USAGE

ChannelChannel RemoteRemoteLocalLocal

Client

IServer Web Service.[Database API Call]()

XMLString ResponseMessage

XMLString

Database API

Client

XMLElementFactory

Figure 4.4: Workflow for iServer web service.

CHAPTER 4. IMPLEMENTATION OF AN ISERVER WEB SERVICE 43

<?xml version="1.0" encoding="UTF-8" ?>

<message>

<status>

<integer>0</integer>

<string>request processed successfully</string>

</status>

<data>

<omInstance omInstanceName="individual">

<individual>

<name>Beat Signer</name>

<description />

<login>signer</login>

<password>signer</password>

</individual>

</omInstance>

</data>

</message>

Figure 4.5: Response message returned by the web service method
entityGetCreator(String).

44 4.3. EXAMPLE USAGE

 <?xml version="1.0" encoding="UTF-8" ?>
 <message>

 <status>
 <integer>0</integer>
 <string>request processed successfully</string>

 </status>
 <data>

 <omCollection omTypeName="entity">
 <omInstance omInstanceName="entity">

 <entity>
 <name>Background Buffalo</name>
 <creator>

 <authorised />
 <unauthorised />
 <properties />

 </entity>
 </omInstance>
 <omInstance omInstanceName="entity">

 <entity>
 <name>Background Cheetah</name>
 <creator>

 <authorised />
 <unauthorised />
 <properties />

 </entity>
 </omInstance>

 </omCollection>
 </data>

 </message>

Page 1 of 1

5/9/2005file://C:\Documents and Settings\alex\My Documents\Thesis\CollaborativeIS\Documentatio...

Figure 4.6: Response message returned by the web service method
entitySources(String).

CHAPTER 4. IMPLEMENTATION OF AN ISERVER WEB SERVICE 45

Figure 4.7: TCP Monitor GUI allowing to intercept the SOAP messages used within a web
service.

46 4.3. EXAMPLE USAGE

5
Implementation of a

Peer Service for iServer

The main goal of this thesis was to design and set up a peer-to-peer implementation of iServer.
To do this we implemented peer-to-peer specific classes conforming to our architecture. In
this section we present the technologies we used and the extensions/implementations made to
our architecture. We also give usage examples by presenting code fragments relevant to the
understanding of the functionality of our classes.

5.1 JXTA Framework

As proposed in the previous thesis on iServer peer-to-peer [6] we chose to implement our peer
service using the JXTA framework [9]. Our knowledge about JXTA is based on the program-
mer’s guide [11], Brendon Wilson’s introductory book [16] and Java P2P Unleashed [5]. We
give a quick introduction to the main concepts and terms in JXTA and refer to these sources
for further needs.
JXTA is an open collaboration platform that supports most needs of a distributed and decen-
tralised architecture. The achievement of the project is the definition of a set of language
independent protocols that constitute a general purpose network programming framework.
The protocols define the mechanisms for collaborating peers to communicate while any de-
vice connected to a network can participate by implementing one or more of them.
A JXTA network of collaborating devices is a set of interconnected nodes referred to as
Peers: any device connected to the network and implementing one or more JXTA protocols
is a peer. A community of peers that have agreed on a common set of services is called
a Peer Group. The JXTA protocols define the manner in which peers perform, among
others, the following tasks:

• Peer discovery

47

48 5.1. JXTA FRAMEWORK

• Create, join and grant access to a peer group

• Advertise and discover services

• Communicate with other peers

JXTA peers advertise their services with XML documents called Advertisements. Peers
discover services by retrieving advertisements that enable them to connect to and interact
with the service providing peer. Peers use Pipes to send messages to each other. Pipes
are encapsulated communication channels enabling point-to-point message exchanging. A
peer may also broadcast messages to all members of a group while the reply to a broadcasted
message is received by its originator only.
In the following sections we give some details relevant to our iServer peer-to-peer implemen-
tation about the main components of a peer service based on the JXTA framework.

5.1.1 Advertisement

An advertisement is a language-neutral metadata structure that describes peer resources such
as peers, peer groups, pipes, and services. JXTA protocols use advertisements to describe and
publish the existence of peer resources. Peers discover a resource by retrieving the respec-
tive advertisement. Among others, the JXTA protocols define the following advertisements:
Peer Advertisement, Peer Group Advertisement, Pipe Advertisement
etc. Advertisements are represented in XML documents.

5.1.2 Peer

A peer is a device connected to the network implementing at least one of the JXTA pro-
tocols. Peers send and receive messages and process them in order to establish a service.
Rendezvous and Relay peers are special peers that implement particular protocols.
A rendezvous peer is responsible for propagating messages within a peer group. It maintains
a cache of advertisements and forwards discovery messages to help other peers discover re-
sources. When a peer joins a peer group, it automatically connects to a rendezvous peer. If
none can be found, it becomes a rendezvous peer for this group. A rendezvous peer also
manages a list of other known rendezvous peers.
A relay peer maintains information on routes to other peers and routes messages to peers. A
peer first checks its own cache for route information to another peer. If nothing can be found,
queries for route information are sent to relay peers. Relay peers also forward messages
between peers that cannot directly address each other, e.g. because of firewall restrictions.

5.1.3 Peer Group

A peer group is a community of peers that agree on a common set of services. A group can be
created and/or joined by peers. A group advertisement can be published to make it possible
for peers to discover it. Peer groups define their own membership policy, e.g. anybody can
join or highly secured and protected.
The Net Peer Group is a predefined group which all peers belong to by default. Groups
form a hierarchical parent-child relationship in which each group has a single parent. The
advertisement for a group is published in itself and its parent group.

CHAPTER 5. IMPLEMENTATION OF A PEER SERVICE FOR ISERVER 49

Peer groups provide, among other, the following services to its members: Discovery
Service, Membership Service, Pipe Service, Resolver Service.

5.1.4 Resolver Service and Resolver Query Handler

A resolver service is a service based on the Peer Resolver Protocol. This protocol
enables peers to broadcast generic requests to all members of a peer group and to receive
responses from replying peers. All peers receive the request but only the originator receives
the replies. A resolver request can also be sent to a particular peer using its unique identifier.
The resolver service is provided by the peer group to its members. Any peer can deploy a
service by implementing the QueryHandler interface and registering it with the resolver
service of the group. The query handler will be notified about requests by the resolver service.
A service is identified by a unique identifier which is set upon registration and which is
used to send a request to it. Resolver Query Messages and Resolver Response
Messages are used to send requests and responses, respectively.

5.1.5 Pipe

A JXTA pipe is an encapsulated mechanism providing two peers with a channel through
which they can send messages. Pipes are unidirectional and their endpoints are referred to
as Input Pipe and Output Pipe: an Input Pipe is advertised by a peer listening
for incoming messages and an Output Pipe is used by a peer sending a message. Pipe
communication is asynchronous. The input pipe notifies its listeners waiting to receive a
message about incoming messages while the output pipe notifies its listeners waiting to send
a message about an already established connection.
Typically, pipes are used for point-to-point communication, but Propagate Pipes exist
that connect one output pipe to multiple input pipes. Secure Unicast Pipes are point-
to-point pipes that provide a secure communication channel.

5.2 User Management

In our iServer peer service a request is always broadcasted to all members of the group. Thus,
a requesting peer receives multiple responses for a single request. We want to rate a response
by the user sending it in order to filter the potential vast number of responses. Therefore,
we implemented a user management that allows user rating. Additionally, we implemented a
user validity system that maintains a list of valid users shared by all peers.

5.2.1 User Validity

Our peer group maintains a set of user validity tuples which every member stores locally.
Such a tuple contains two elements of type User and Boolean. A user is valid if it is
paired with true and invalid otherwise. A new user can be added to the set as a valid user if it
is not already contained and set invalid. A user can be set invalid but never revalidated again.
Note that, as opposed to the set of online peers, this set also contains users that may be not
online.
All members of the peer group store the set of user validities locally. We give the steps
necessary to keep these sets consistent:

50 5.2. USER MANAGEMENT

• On startup a peer tries to read a file containing tuples stored in the previous session. If
this file does not exist, it creates a new one.

• It then creates a local tuple set Slocal containing the tuples in the file. If the user owning
the peer it not contained, it is added to this set.

• Whenever a peer joins the group, it retrieves the set of user validities of all other mem-
bers.

• Every incoming set Sremote is treated as follows:

– If Slocal contains all tuples in Sremote and every two corresponding tuples from
each set either have the same boolean value or they differ and the local tuple
contains a false value then leave the local set as it is. If Sremote contains a tuple
not contained in Slocal then add this tuple to the local set. If two corresponding
tuples from each set have a different boolean value, and the local tuple has a true
value then set it to false.

– If Sremote contains all tuples in Slocal and every two corresponding tuples from
each set have the same boolean value or they differ and the remote tuple has a
true value, then nothing more is done. Note that, so far, in no two corresponding
tuples with different boolean values the boolean value of the local tuple can be
true. In all other cases broadcast the local set of tuples to all other members of
the group which each treat an incoming set as just described.

• When no more sets are broadcasted all tuple sets are consistent.

• As soon as any local set changes it is broadcasted to all other members of the group.

We do not use this set of user validities within the iServer peer service yet. We have im-
plemented user validity management in conjunction with user rating where it is not used
anymore. However, the set is kept consistent and it is left to future uses of iServer peer
service to decide whether to keep maintaining user validity management or not.
Figure 5.1 contains the UML diagram for the UserValidityVector class implementing
the functionality described above. We display the public methods only, i.e. one for adding
and one for removing a user as well as a method to check whether a user is valid or not. Note
that the rmUser(User) method just sets a user to invalid since removing a user is prohib-
ited. A UserValidityVector object is created by providing it with a UserValidity-
RequestHandler object described in Sect. 5.4.2 which is used to automatically propagate
changes to the local set of user validities.
The set of validities is saved to a local file by every peer so it persists even when no peer
is running. When a UserValidityVector object is created it tries to read the set of
validities from this file. In case that this file does not exist or cannot be read for any other
reason, a new file is created. Any change to the set are stored immediately.

5.2.2 User Rating

A user rating is a tuple with four entries (useri, userj , rij , t): the rating user i, the rated user
j, the rating value rij and a timestamp t. Such a tuple is always created by the rating user and

CHAPTER 5. IMPLEMENTATION OF A PEER SERVICE FOR ISERVER 51

+addUser(user : User) : void

+rmUser(user : User) : void

+isValid(u ser : User) : bool

UserValidityVector

Figure 5.1: UML diagram for UserValidityVector class.

propagated to all other members of the group. Our user management ensures that every peer
has the same set of tuples stored locally. This tuple synchrony is achieved as follows:

• On startup a peer tries to read a file containing tuples stored in the previous session. If
this file does not exist it creates a new one.

• It then creates a tuple set Slocal containing all tuples in the file. Whenever Slocal

changes a current snapshot is stored to the file.

• When the peer has joined the group it requests the tuple set Si
remote from all other

members i of the group.

• Every incoming tuple set Si
remote from member i is compared with local set Slocal:

– If Slocal contains all tuples in Si
remote and all tuples in local set have a timestamp

greater than or equal to the ones in the remote set, then leave the local set as it is.
In any other case update the local set.

– If Si
remote contains all tuples in Slocal and all tuples in remote set have a

timestamp equal to the ones in the local set, then nothing is done. Note that
no remote timestamp can be greater than in local set now. In any other case the
local set is broadcasted to all other members of the group who proceed the same
as described above.

• When no more sets are broadcasted all tuple sets contain the same tuples with equal
timestamps each.

• Whenever a new rating is set locally the local set of tuples is broadcasted to all other
members of the group each of which treat an incoming set as described above.

Whenever a user a receives a response to an iServer request from another user b this response
is rated using the tuple set. If a tuple (usera, userb, rab, t) exists then rab is the rating value.
If such a tuple does not exist, we use sequences of users (usera, ..., useri, userj , ..., userb)
where there exist a tuple useri, userj , rij , t for every two neighbors useri, userj appearing
in this sequence.
The idea can be described as follows: if a user a has not explicitly rated user b, but it
has rated a third user i which has rated user b, then the tuples (usera, useri, rai, t) and
(useri, userb, rib, t) can be aggregated to obtain an appropriate estimation of the rating value
rab.

52 5.2. USER MANAGEMENT

The tuple set can be regarded as a weighted directed graph (V,E) where a vertex vi ∈ V
represents the user i and a directed edge (i, j) ∈ E has the weight rij representing the rating
value user i gives to user j. We treat the rating value as an amount of trust that flows from the
rating user to the rated user. Thus, we can formulate the question of how a user i rates another
user j as a well known graph theory problem: what is the maximum flow from a vertex vi to
another vertex vj . For every path p from vi to vj we take the smallest weight and name it rp

ij .
All these weights rp

ij are added up and returned as the amount of trust that flows from user i
to user j.
The UserRatingManager object is created by providing it with a UserRating-
RequestHandler object described in Sect. 5.4.2. This handler is used to automatically
propagate new ratings. The class defines methods to set and get a user rating tuple. The
timestamp is determined and added within the setting procedure. It uses a Graph [10] object
to manage the rating values between pairs of users. The method getUserRating(User,
User) first checks if there is a direct edge pointing from the vertex vrater representing the
first argument to vratee, the one representing the second. If this exists, the method returns its
associated weight which represents the rating value. If there is no direct edge, an Edmonds-
Karp [4] algorithm is run that returns the max flow value from vrater to vratee. Note that if
the graph is not connected and the two vertices do not belong to the same subgraph, then the
returned max flow value is 0.
Figure 5.2 shows the UML diagram for the UserRatingManager class implementing the
user rating management. We display the public methods only, i.e. one for setting/updating a
user rating and the other one for retrieval of a user rating.
The set of user ratings is stored to a local file by every peer. Hence it also persists when no
peer is running. When a UserRatingManager object is created it tries to read in the tuple
set from this file. If this fails it creates a new one. Any changes to the tuple set are stored
immediately.

+getUserRating() : int

+setUserRating(rater : User, ratee : User, rating : int) : void

UserRatingManager

Figure 5.2: UML diagram for UserRatingManager class.

5.2.3 Propagation Retardation

Whenever a peer retrieves user validity/rating sets from all other members of the group it
will receive several sets within a short period of time. Each incoming set possibly causes
the propagation of the local set to all other members. This would produce a vast number of
exchanged messages since all other peers potentially propagate as well.
To avoid this we have decided to locally delay the request for propagation for a fixed amount
of time and to ignore all subsequent requests within this period of time. Since with every in-
coming set the local set becomes more consistent with the one containing all tuples, i.e. dele-
tions are not supported, there is no problem in waiting for the last incoming set before prop-

CHAPTER 5. IMPLEMENTATION OF A PEER SERVICE FOR ISERVER 53

agating the local set.
We implemented a class ExecutionDelayer as a thread taking the arguments neces-
sary to make a method invocation using Java Reflection and a delay when constructed.
The thread waits for the given period of time and then executes the given method. It also
maintains a static set of Method objects currently pending for executions and no new in-
stance of an ExecutionDelayer object delaying a method call already pending is cre-
ated. This is achieved by setting the visibility of the constructor to private and defining
a static addDelayer(Method, Object, Object[], int) method that creates a
new thread only if the method is not contained in the set of pending methods. Figure 5.3
illustrates the UML definition of the class.

+addDelayer(method : Method, object : Object, parameters : Object[], delay : int) : void

-removeDelayer(method : Method) : void

+isEmpty() : bool

-ExecutionDelayer(method : Method, object : Object, parameters : Object[], delay : int)

+run() : void

-execute() : void

-pendingExecutions : Set<Method>

-delay : int

-method : Method

-object : Object

-parameters : Object[]

ExecutionDelayer

Figure 5.3: UML diagram for ExecutionDelayer class.

The propagate() method of the handlers described in Sect. 5.4.2 automatically delays
its execution by registering the actual propagation method with the ExecutionDelayer
class.

5.3 Response Rating

Since every iServer P2P API request is broadcasted to all members of the groups a peer
possibly receives multiple responses. Heinzer [6] proposes to filter and return a selection of
responses only. We implemented a rating component where incoming responses are collected
and a collection of selected responses can be accessed. The selection is based on rating values
that are computed for every response. Any response having a value greater than a given
threshold value is added to the collection returned. The rating component contains a main
class RatingManager, rater classes implementing the ResponseRater interface and
Aggregator implementations. Following we present each of these classes.

5.3.1 RatingManager

A RatingManager object is used as the interface between incoming responses and the
requesting user. The requesting user calling an iServer P2P API method receives an integer
valued ID identifying the broadcasted request. This ID also identifies all responses given to
this request. The user retrieves the selected responses by providing this ID.
A response is identified by the request ID and the responding user. For every request this
class maintains a set of responses paired with the responding user each. It also manages a set

54 5.3. RESPONSE RATING

of registered ResponseRater objects that will be used to compute an overall rating value.
Multiple rater objects can be registered to rate a response in which case the rating values
computed by each rater are aggregated into one overall value. Each rater is associated with
a weight which is multiplied with the rating value computed before being aggregated. The
weights are automatically normalised, i.e. each divided by the sum of all, such that they add
up to 1.0. A previously assigned Aggregator object is used to aggregate multiple rating
values into one overall value.
When a rating manager is asked to return a collection of selected responses to a particular
request, it retrieves the set of responses received so far. For each response it computes and
aggregates the rating values returned by every registered response rater. All responses having
an overall rating value greater than the given threshold are added to the collection returned.
Figure 5.4 shows the UML definition for the RatingManager class. It defines methods
to register and unregister ResponseRater objects and to set an Aggregator object.
This class also defines a method addResponse(Integer, User, Response which
is used by the IServerResponseHandler to add incoming responses given by a user
responding to a request identified by its ID. The response handler is presented in Sect. 5.4.2.
Finally, the requesting user retrieves the selected responses by providing a request ID and a
threshold value all returned responses must fulfill.

+PeerService(in peerGroup : Group, in user : User)
+start() : int
+stop() : void

-peerGroup : Group
-user : User

PeerService

Group

User

ResponseHandler

+Peer(in user : User)
+registerHandling(in ID : String, in requestHandler : Class, in responseHandler : Class) : void
+unregisterHandling(in ID : String) : void
+getHandling(in ID : String) : Pair<PeerService, ResponseHandler>
+run() : void

-peerGroup : Group
-user : User
-handlers : Hashtable<String, Pair<PeerService, ResponseHandler>>

Peer

«datatype»
Hashtable<String, Pair<PeerService, ResponseHandler>

>

String

Class

«datatype»
Pair<PeerService, ResponseHandler>

+IServerP2P(user : User)
+entitySources(entity : Entity) : void
+[IServer API Method]() : void
+getResponses(requestID : int) : Collection<Response>

-peer : Peer
-user : User
-peerViewer : ViewThread

IServerP2P

ViewThread

Entity

+getUserRating() : int
+setUserRating(in rater : User, in ratee : User, in rating : int) : void

UserRatingManager

+addUser(in user : User) : void
+rmUser(in user : User) : void
+isValid(in user : User) : bool

UserValidityVector

+RatingManager()
+RatingManager(in aggregator : Aggregator<Double>)
+setAggregator(in aggregator : Aggregator<Double>)
+addRater(rater : ResponseRater) : void
+addRater(rater : ResponseRater, weight : double) : void
+rmRater(rater : ResponseRater) : void
+addResponse(requestID : int, user : User, response : Response) : void
+getResponseByThreshold(requestID : int, threshold : double) : Collection<Response>

-responses : Hashtable<Integer, Collection<Pair<User, Response>>>
-raters : Hashtable<ResponseRater, Double>
-aggregator : Aggregator<Double>

RatingManager

Aggregator<Double>

Hashtable<ResponseRater, Double>

Hashtable<Integer, Collection<Pair<User,
Response>>>

+rate(in user : User, in universe : Collection<Pair<User, Response>>, in response : Response) : double

«interface»
ResponseRater

Collection<Pair<User, Response>>

Response

+addDelayer(in method : Method, in object : Object, in parameters : Object[], in delay : int) : void
-removeDelayer(in method : Method) : void
+isEmpty() : bool
-ExecutionDelayer(in method : Method, in object : Object, in parameters : Object[], in delay : int)
+run() : void
-execute() : void

-pendingExecutions : Set<Method>
-delay : int
-method : Method
-object : Object
-parameters : Object[]

ExecutionDelayer Method

Object

«datatype»
Object[]

«datatype»
Set<Method>

+Aggregator()
+addValue(in value : T) : void
+reset() : void
+getAggregation() : T

#values : LinkedList<T>
Aggregator<T>

T «datatype»
LinkedList<T>

Collection<Response>

Figure 5.4: UML diagram for RatingManager class.

5.3.2 ResponseRater

A rating value for a response is computed by rater classes implementing the Response-
Rater interface. The interface defines a method that rates a response given by a user re-
sponding to a particular request. The information available to the rating method consists
of the set of all responses to this request, the responding user and the response to be rated.
The method returns a double value ranging between 0 and 1. In Fig. 5.5 we give the UML
definition of the ResponseRater interface.
We have implemented two response raters:

• A RateByUser object accesses the UserRatingManager object introduced in the
previous Sect. 5.2.2 to retrieve the rating value of the responding user. This value is
normalised to range between 0 and 1 before being returned as its own rating value.

CHAPTER 5. IMPLEMENTATION OF A PEER SERVICE FOR ISERVER 55

+rate(user : User, universe : Collection<Pair<User ,Response>>, response : Response) : double

«interface»

ResponseRater

Figure 5.5: UML diagram for ResponseRater interface.

• A RateByFrequency object returns a rating value proportional to the frequency a
response has been given by members of the peer group. If a response has been returned
nresponse times out of ntotal responses, then the returned rating value is nresponse

ntotal
.

ResponseRater objects must be created outside the RatingManager class and regis-
tered. Since we need to access the User and UserRatingManager objects they are cur-
rently created within the initialisation of the iServerP2P object introduced in Sect. 5.4.3.

5.3.3 Aggregator

An Aggregator<T> class defines the methods void addValue(T) and
T getAggregation() necessary for aggregation of multiple values. We show its
UML definition in Fig. 5.6. We implemented an Adder and Multiplicator class each
extending the Aggregator<Double> class. The Adder class adds up all added values
and the Multiplicator class multiplies all values.

+Aggregator()

+addValue(value : T) : void

+reset() : void

+getAggregation() : T

#values : LinkedList<T>

Aggregator<T>

Figure 5.6: UML diagram for Aggregator class.

An Aggregator object maintains a set of values added which it aggregates according to
its specific implementation. Note that this set must be cleared using the reset() method
whenever an object is to be used to aggregate more than once.

5.4 Peer Service Specific Components and Workflow

To set up an iServer peer service according to our interaction architecture we provide handlers
that implemented the JXTA specific requirements enabling the transmission of requests and
responses. The iServer specific functionality consists of requesting a remote peer to execute
an iServer API method and returning the response. We implemented additional functionality
useful in the context of a peer-to-peer application such as online peer retrieval, chat facility

56 5.4. PEER SERVICE SPECIFIC COMPONENTS AND WORKFLOW

and user rating. We also provide a graphical user interface (GUI) that can be started on
demand.
Within the iServer peer service the user plays a more important role than in the iServer web
service. Because responses to a request are received from all members of the group, we want
to identify peers by the user they represent in order to rate the responses. As in the iServer
web service, the user identification can also be used to grant access to iServer data according
to the database’s user management rules. In this section we present the main components of
our iServer peer service implementation.

5.4.1 JXTA

Peer

The Peer class encapsulates the functionality of a JXTA peer. When constructed it creates a
Group object that either retrieves or creates a JXTA group and joins it. A Peer object acts
as a rendezvous service within the peer group as proposed by Heinzer [6]. A Peer object
is constructed with a User object. Any request or response sent from this object will be
enriched with user identification.
The main task of our peer is to register/unregister resolver services. Thus it offers a method
taking request and response handler Class objects and an identification string uniquely iden-
tifying the resolver service the handlers implement. Both handlers are instantiated, the request
handler registered with the peer group’s resolver service and the response handler registered
to be notified on incoming responses by the request handler. Another method taking a service
identifying string unrolls the actions performed within the registration process.
This class implements the Runnable class and starts a thread containing itself within the
constructor. In Fig. 5.7 we present the UML diagram for the Peer class.

+Peer(user : User)

+registerHandling(ID : String, requestHandler : Class, responseHandler : Class) : void

+unregisterHandling(ID : String) : void

+getHandling(ID: String) : Pair<PeerService, ResponseHandler>

+run() : void

-peerGroup : Group

-user : User

-handlers : Hashtable<String, Pair<PeerService, ResponseHandler>>

Peer

Figure 5.7: UML diagram for Peer class.

Group

The Group class encapsulates the functionality required to retrieve or create and join a JXTA
group. It delegates accesses to the JXTA group such as retrieving of PeerGroupID, Pipe-
Service, RendezVousService etc required by the handlers. The group constructed and
maintained by this class is an iServer specific group offering the services described above to
its members and requiring them to implement and register the
When constructed, it first retrieves the group advertisement which it finds if it has been created
and published by peers that are still or have recently been online. If this fails, it tries to open

CHAPTER 5. IMPLEMENTATION OF A PEER SERVICE FOR ISERVER 57

a file containing the group advertisement. In case the file cannot be found or accessed, the
advertisement is created from scratch and saved to a file.
Once the advertisement has been found or created the Group object applies for membership
providing the authentication credentials. At this moment there is no restriction for member-
ship. The construction is finished once the group has been created and joined. The Peer
object can then be regarded as being a member of the group since it has access to the group
services required to register its services.

ResolverRequestHandler

The ResolverRequestHandler is an abstract class extending the QueryHandler
interface defined by JXTA for registering with the resolver service. It implements
the interface methods processQuery(ResolverQueryMessage) and process-
Response(ResolverResponseMessage) that will be called automatically by the re-
solver service. The processQuery(ResolverQueryMessage) method extracts the
Data object from the query message and delegates the processing to the subclass imple-
mentation of the handleRemoteRequest(HandlingEvent) method defined in the
RemoteRequestHandler interface. The sendQuery(String) method broadcasts a
resolver query message to all other members of the group.
The workflow within a resolver service implementation such as iServer peer service
can be described as follows: A NotifyingLocalRequestHandler object calls
sendQuery(String) providing the XML string representation of the Data request ob-
ject as argument. The resolver request handler broadcasts the query within the peer group.
The resolver service notifies all registered ResolverRequestHandler objects by in-
voking their processQuery(ResolverQueryMessage) method. The handler dele-
gates the processing of the request to its subclass implementation, e.g. IServerRequest-
Handler which returns an XML string representation of the Data response object. The
response is sent back to the requesting peer only.
A resolver request handler gets notified by the resolver service when a response arrives. The
processResponse(ResolverResponseMessage) method handles the response by
notifying the response handler registered as listener for incoming responses.
A ResolverRequestHandler object is constructed by providing a User object iden-
tifying the user of the Peer. The User object will be used by subclasses to automatically
enrich a request and response message with a user identification. The start() and stop()
register and unregister the handler object with the peer group resolver service, respectively.
This class extends the PeerService class and implements the RemoteRequest-
Handler interface. All request handlers presented in the next section extend this
ResolverRequestHandler class.

PeerService

This abstract class defines the methods required to register and unregister a service with the
peer group resolver service. These methods are start() and stop(). The Resolver-
RequestHandler class presented above implements this interface.

58 5.4. PEER SERVICE SPECIFIC COMPONENTS AND WORKFLOW

5.4.2 Handling

In this section we present the implementations of the interaction architecture’s handling com-
ponent specific to peer services and additional service classes. A service is implemented by
two classes, a request and response handler. The request handler extending the Resolver-
RequestHandler class is registered with the peer group’s resolver service and the re-
sponse handler is registered with the request handler as a listener for incoming responses.
The handlers introduced in the scope of our interaction architecture were defined with Data
objects or XML strings representing Data objects as parameter and return values. The
iServer P2P handlers require more information such as the requesting and responding user
and an ID which allows to identify responses corresponding to a particular request. Therefore
we implemented a HandlingEvent class which contains this additional information along
with the Data object. The handlers presented in this section take objects of this class as
argument.

NotifyingLocalRequestHandler

In Chapt. 2 we presented a request response flow (Fig. 2.1) where the local request handler
returns the response with the handleLocalRequest(Data) method . In a peer service
we receive multiple responses to one request and the time it takes to receive a response sug-
gests the implementation of a listener pattern. Thus we define a new interface Notifying-
LocalRequestHandler with the handleLocalRequest(Data) method returning
void. All request handlers presented in this section implement this interface.

ListeningResponseHandler

The counter part of the NotifyingLocalRequestHandler interface is a response han-
dler that is notified about an incoming response. Its handleResponse(Handling-
Event) method is called whenever a response is received by the resolver request handler.
The ResponseHandler class presented next implement this interface.

ResponseHandler

This abstract class groups methods and fields common to all response handlers presented
in this section. A response handler applies the responses to an object such as an iServer
database interface or a user manager. This object is called the model and this class defines
the corresponding abstract method setModel(Object). When a request response handler
pair is registered with a Peer object, the registration method creates a ResponseHandler
object. The object registering a particular service must then set the model of the response
handler.
This class defines a handleResponse(int, User, Message) method that returns a
boolean value. In JXTA multiple responses from one peer may result from one request. In
order not to unnecessarily handle multiple responses this method keeps track of responses
to a particular request received by a particular user. If it is the first response, the method
returns true and it returns false otherwise. Keeping track is accomplished by a Resolver-
ResponseTracker object we do not describe any further.
A second private method streamResponse(Message) is called by the former to stream
the message to a host defined by its name and port number. This can be useful for debugging

CHAPTER 5. IMPLEMENTATION OF A PEER SERVICE FOR ISERVER 59

purposes and it can be turned on and off by the object constructing an instance of this class.
A subclass implementation is free to call handleResponse(int, User, Message)
to use its functionality. This class extends the ListeningResponseHandler class. All
response handlers presented in this section extend this class.

iServer Handling

We implemented a request and response handler specific to iServer requests and responses.
An IServerRequestHandler object takes a Data request object, packs it in a User-
Message object along with the User object representing the user owning the Peer object.
It broadcasts the XML string representation of this message to all other members of the peer
group.
On incoming responses the IServerResponseHandler object is notified which han-
dles the response. The response is added to the set of responses managed by the Rating-
Manager object set as the model of the response handler.
From an incoming request the UserMessage XML string representation is extracted
from which the message object is reconstructed. The request handler invokes the
computeResponse() method on the Request object and returns the XML string rep-
resentation of the UserResponseMessage object containing the response and the User
object representing the user owning the responding peer. Additionally, the response message
is enriched with a Status object as introduced in Sect. 3.2.

Chat Handling

This service implements a chatting facility for online members of the peer group. So
far, a message can be broadcasted to all other members by any peer. The Chat-
RequestHandler class defines the method to broadcast a string message. Its
handleRemoteRequest(HandlingEvent) extracts the message and notifies its lis-
tening response handler. Note that the notification takes place within the request handling as
opposed to before when it took place on an incoming response. The handler responds with
an acknowledging message.
The response handler has a ContentModel object as its model and just appends incoming
messages to it. Messages are displayed in a panel contained in the GUI which listens for
changes in the ContentModel object. Acknowledging messages are streamed if streaming
is turned on but ignored otherwise.

Online Peer Retrieval Handling

This service allows the retrieval of User objects from responding peers to display a list of
users currently online. The PresenceRequestHandler request handler has a method
sendRetrievalMessage() which broadcasts a UserMessage object which will be
identified as an online peer retrieval message by PresenceRequestHandler objects
receiving the request. They reply with UserMessage messages themselves and the
PresenceResponseHandler response handler extracts the User object from them. It
adds the received user representations to its UserListModel model object that notifies the
GUI panel about changes.

60 5.4. PEER SERVICE SPECIFIC COMPONENTS AND WORKFLOW

User Validity Handling

User validities management has been presented in Sect. 5.2. The UserValidityRequst-
Handler class defines a method retrieveValidities() for requesting validities
from all other members in the group. The retrieval is initiated by the vector when it is ini-
tialised.
Another propagateValidities() method sends a representation of all validities to all
other members. This method is invoked by the UserValidityVector object when a
validity is added or changed.
The request handler defines a field pointing to the UserValidityVector object so that it
can respond to other peer’s requests for validities at any time. The retrieval and propagation
methods are delayed using the ExecutionDelayer class presented in Sect. 5.2.3.
The request handler either receives a request for sending all validities or it receives a User-
ValidityVector object. Note that a UserValidityVector object may be received
within a resolver query, i.e. unrequested, or as a response to a request.
In the first case the vector is received in the handleRemoteRequest(Data) method
defined in the UserValidityRequestHandler class. In the second case it is the
processResponse(ResolverResponseMsg) method defined in the Resolver-
RequestHandler receiving the vector.
However, in both cases the UserValidityResponseHandler object is notified and this
one treats requested as well as unrequested vectors equally as described in Sect. 5.2.
In case of a request for validities, the request handler replies with a UserMessage object
containing up to date user validity values.

User Rating Handling

User rating management has been introduced in Sect. 5.2. The handlers are very similar to
the ones handling user validity requests and propagation as presented in the previous section.
The UserRatingRequstHandler class defines a method retrieveRatings() for
requesting user ratings from all other members in the group. The retrieval is initiated by the
UserRating object when it is initialised.
The propagateRatings() method propagate a snapshot of all user ratings to all other
members. This method is invoked by the UserRating object when a user rating is set or
altered.
The request handler has a member pointing to a UserRatingVector object which always
contains a current snapshot of all user ratings. Whenever a rating is set or altered, the User-
Rating object updates this field. Hence, the request handler may respond to other peer’s
requests for ratings at any time. The retrieval and propagation methods are delayed using the
ExecutionDelayer class presented in Sect. 5.2.3.
The request handler receives a UserRatingVector object either broadcasted by any other
peer or as a response to a local request. In the first case the vector is received in the handle-
RemoteRequest(Data) method defined in the UserRatingsRequestHandler
class. In the second case it is the processResponse(ResolverResponseMsg)
method defined in the ResolverRequestHandler receiving the vector.
In both cases the UserRatingsResponseHandler object is notified and this one treats
requested as well as unrequested vectors equally as described in Sect. 5.2.
In case user ratings are retrieved by another peer joining the group, the request handler replies

CHAPTER 5. IMPLEMENTATION OF A PEER SERVICE FOR ISERVER 61

with a UserMessage object containing up to date user rating values.

Pipe Communication

We have implemented point-to-point communication using pipes as close to the request re-
sponse handler pattern as possible. A JInputPipe class also extends the PeerService
class such that it can be loaded using the registerHandling(String, Class,
Class) method defined by the Peer class.
A pipe is created with a pipe advertisement. The JInputPipe class tries to read in the
advertisement from a file. If this fails, it creates it from scratch and saves it to a file. Once
the pipe has been created and is ready to be used, this advertisement can be accessed. It can
be sent to another peer, e.g. as part of a broadcasted request, which can then create the output
pipe and send messages. A JInputPipe object notifies its registered listeners whenever an
incoming message has been received.
The counterpart to the JInputPipe class is the JOutputPipe class. It defines a static
method sendMsg(PipeService, PipeAdvertisement, String)which creates
an instance of itself that will send the message as soon as the output pipe has been created.
The PipeService object can be retrieved in the Group object. The pipe advertisement
is created by the JInputPipe object where it can be accessed. The third argument is the
message to be sent.
At the moment we are not using pipe communication. If it had to be deployed, an appropriate
response handler would have to be implemented and registered with the Peer object.

5.4.3 iServer P2P

This is the main class of iServer peer service. It creates a UserManagement object, starts
a Peer thread and loads the resolver services. If chosen, the GUI is started and configured.
Finally it defines the iServer peer service methods available to the user of the peer service.
As in the iServer web service, these methods replicate the methods in the iServerRequest-
Factory class which replicate the methods from the iServer API. These methods form the
iServer P2P API and the offered functionality may easily be adjusted in this class. All iServer
API methods create their specific Request object with the request factory and forward it to
the request handler.
An iServerP2P object may be started and run in a stand alone fashion. It can also be cre-
ated within another class. Figure 5.8 depicts the UML diagram for the iServerP2P class.
The entitySources(Entity)method is just an example method for the iServerP2P
class. The method in squared brackets stands for all iServer P2P API methods that are imple-
mented in this class. All of these methods return an integer value representing the request ID
with which corresponding responses can be identified.
The getResponses(int) method returns the responses to a given request ID as selected
by the rating manager introduced in Sect. 5.3.1. The selection threshold is set as a static
member variable in the iServerP2P.

5.4.4 Workflow

Figure 5.9 schematically illustrates the interaction in a peer service. The iServer P2P API
defines methods to access iServer functionality on a remote peer.

62 5.4. PEER SERVICE SPECIFIC COMPONENTS AND WORKFLOW

+PeerService(in peerGroup : Group, in user : User)
+start() : int
+stop() : void

-peerGroup : Group
-user : User

PeerService

Group

User

ResponseHandler

+Peer(in user : User)
+registerHandling(in ID : String, in requestHandler : Class, in responseHandler : Class) : void
+unregisterHandling(in ID : String) : void
+getHandling(in ID : String) : Pair<PeerService, ResponseHandler>
+run() : void

-peerGroup : Group
-user : User
-handlers : Hashtable<String, Pair<PeerService, ResponseHandler>>

Peer

«datatype»
Hashtable<String, Pair<PeerService, ResponseHandler>

>

String

Class

«datatype»
Pair<PeerService, ResponseHandler>

+IServerP2P(user : User)
+entitySources(entity : Entity) : int
+[IServer API Method]() : int
+getResponses(requestID : int) : Collection<Response>

-peer : Peer
-user : User
-peerViewer : ViewThread

IServerP2P

ViewThread

Entity

+getUserRating() : int
+setUserRating(in rater : User, in ratee : User, in rating : int) : void

UserRatingManager

+addUser(in user : User) : void
+rmUser(in user : User) : void
+isValid(in user : User) : bool

UserValidityVector

+RatingManager()
+RatingManager(in aggregator : Aggregator<Double>)
+setAggregator(in aggregator : Aggregator<Double>)
+addRater(rater : ResponseRater) : void
+addRater(rater : ResponseRater, weight : double) : void
+rmRater(rater : ResponseRater) : void
+addResponse(requestID : int, user : User, response : Response) : void
+getResponseByThreshold(requestID : int, threshold : double) : Collection<Response>

-responses : Hashtable<Integer, Collection<Pair<User, Response>>>
-raters : Hashtable<ResponseRater, Double>
-aggregator : Aggregator<Double>

RatingManager

Aggregator<Double>

Hashtable<ResponseRater, Double>

Hashtable<Integer, Collection<Pair<User,
Response>>>

+rate(in user : User, in universe : Collection<Pair<User, Response>>, in response : Response) : double

«interface»
ResponseRater

Collection<Pair<User, Response>>

Response

+addDelayer(in method : Method, in object : Object, in parameters : Object[], in delay : int) : void
-removeDelayer(in method : Method) : void
+isEmpty() : bool
-ExecutionDelayer(in method : Method, in object : Object, in parameters : Object[], in delay : int)
+run() : void
-execute() : void

-pendingExecutions : Set<Method>
-delay : int
-method : Method
-object : Object
-parameters : Object[]

ExecutionDelayer Method

Object

«datatype»
Object[]

«datatype»
Set<Method>

+Aggregator()
+addValue(in value : T) : void
+reset() : void
+getAggregation() : T

#values : LinkedList<T>
Aggregator<T>

T «datatype»
LinkedList<T>

Collection<Response>

Figure 5.8: UML diagram for iServerP2P class.

Data objects are used to encode the request which is to be processed remotely and to encode
the resulting response. The Request object is created by the request factory. The request
is handed over to the IServerRequestHandler (a) which creates a UserRequest-
Message object containing it and broadcasts its XML string representation with the resolver
service of the peer group (b). The request is received by RemoteRequestHandler ob-
jects which reconstruct the message and extracts the Request object (c). The request is
processes which autonomously interacts with the API of the remote database (d) and returns
a Response object (e). The remote handler uses the Response object to create a User-
ResponseMessage object which is returned to the requesting peer as XML string (f). The
local handler reconstructs the message and extracts the response (g). The response can either
be presented to the user directly or fed back to a local information system (h).
In Fig. 5.10 we illustrate the components participating in request and response handling. The
colored boxes reflect the inheritance structure. A blue box represents the complete handling
component of a local peer. A bit of a second peer is visible to the right which represents a
remote peer. Member fields are written in italic while abstract as well as interface methods
are marked with the keyword abstract.
The boxes named [...]RequestHandler and [...]ResponseHandler represent
all previously introduced request and response handlers such as IServerRequest-
Handler, IServerResponseHandler, UserRatingRequestHandler etc.
Handling starts with a local request. For example, an iServer P2P API method calls the
method handleLocalRequest(Data) providing the ReflectionQuery object as
parameter. This method invokes sendQuery(String) defined in the Resolver-
RequestHandler class. The request is broadcasted to all members of the group with
the resolver service. A peer receives a resolver request through its method process-
Query(ResolverQueryMsg. The request is delegated to the abstract handleLocal-
Request(HandlingEvent) method which is implemented in the (...)Request-
Handler classes. This method returns the Response object which is sent back to the
requesting peer using the resolver service.
A requesting peer receives the response through its processResponse(Resolver-
ResponseMsg method. There, a notification of all listening response handlers is initi-
ated. The notifyListeners() calls handleResponse(HandlingEvent) which
is implemented in the (...)ResponseHandler classes. The three parameters of the
handleResponse(requestID, User, Message) method are extracted from the
HandlingEvent object. This method calls the overriden one in the ResponseHandler
class which checks for multiple responses using the ResolverResponseTracker mem-

CHAPTER 5. IMPLEMENTATION OF A PEER SERVICE FOR ISERVER 63

Message

Message

Message

Local Request Handler

Remote Request Handler

Request Factory

Database API

Message

Database API

XMLString

XMLString

Data

Data

Data

Data

a

b c

d

e

fg

h

Local Response Handler

Figure 5.9: Schematic illustration of the interaction between two peers.

ber. If the (requestID,User) tuple is unique, the response is processed with the model set
for the response handler.

5.5 Example Usage

In this section we present the usage of our iServer peer service implementation. We give an
example iServer P2P API request and show the messages sent between two peers. Further
information how to get a peer started and running are given in Appendix A.
Figure 5.11 shows a pseudo code implementation of an iServer P2P API method. All API
methods are implemented after the same pattern: in a first step we create the request object
with the request factory. Then we get the request handler from the Peer object and finally
we send the request. The response handler will take care of replies from other peers.
In Fig. 5.12 we show the request message that is broadcasted to all peers in the group. The
contained Data object is a OMCollectionReflectionQuery object as created by the
request factory.
Figure 5.13 contains the corresponding response message with which a peer replies to the
request. The Data member of the message points to a OMCollectionResponse ob-
ject that was created by the computeResponse() method of the OMCollection-
ReflectionQuery object.
Figures 5.14 - 5.16 show our GUI in action. The log panel shows all messages sent and
received and additional log messages depending on which log level is set to be shown. The
existent users panel displays the content of the user validity vector as a list. A double click on

64 5.5. EXAMPLE USAGE

ResponseHandlerNotifyer

Vector<ListeningResponseHandler>

addListener(ListeningResponseHandler)
removeListener(ListeningResponseHandler)
notifyListeners()

Group, User

abstract start()
abstract stop()

abstract handleRemoteRequest(HandlingEvent)

ResolverService

start()
stop()
sendQuery(String)
processQuery(ResolverQueryMsg)
processResponse(ResolverResponseMsg)

abstract handleLocalRequest(Data)

handleRemoteRequest(HandlingEvent)
handleLocalRequest(Data)

PeerService

RemoteRequestHandler

ResolverRequestHandler

NotifyingRequestHandler

[. . . -]RequestHandler

abstract handleResponse(HandlingEvent)

ResolverResponseTracker

abstract setModel(Object)
abstract unsetModel()
handleResponse(requestID, User, Message)
streamResponse(Message)

model

setModel(Object)
unsetModel()
handleResponse(HandlingEvent)
handleResponse(requestID, User, Message)

ListeningResponseHandler

ResponseHandler

[. . . -]ResponseHandler

ResponseHandlerNotifyer

Vector<ListeningResponseHandler>

addListener(ListeningResponseHandler)
removeListener(ListeningResponseHandler)
notifyListeners()

Group, User

abstract start()
abstract stop()

abstract handleRemoteRequest(HandlingEvent)

ResolverService

start()
stop()
sendQuery(String)
processQuery(ResolverQueryMsg)
processResponse(ResolverResponseMsg)

abstract handleLocalRequest(Data)

handleLocalRequest(HandlingEvent)
handleLocalRequest(Data)

PeerService

RemoteRequestHandler

ResolverRequestHandler

NotifyingRequestHandler

[. . . -]RequestHandler

abstract handleResponse(HandlingEvent)

ResolverResponseTracker

abstract setModel(Object)
abstract unsetModel()
handleResponse(requestID, User, Message)
streamResponse(Message)

model

setModel(Object)
unsetModel()
handleResponse(HandlingEvent)
handleResponse(requestID, User, Message)

ListeningResponseHandler

ResponseHandler

[. . . -]ResponseHandler

Figure 5.10: Class hierarchy and method calls of request and response handlers.

a user item opens an input dialog where a rating can be typed in. The rightmost panel shows
the graph of user ratings.

CHAPTER 5. IMPLEMENTATION OF A PEER SERVICE FOR ISERVER 65

p u b l i c vo id e n t i t y S o u r c e s (E n t i t y s o u r c e) {

/ / g e t r e q u e s t o b j e c t a t r e q u e s t f a c t o r y
Reques t r e q u e s t =

R e q u e s t F a c t o r y . e n t i t y S o u r c e s (s o u r c e) ;

/ / g e t r e q u e s t h a n d l e r
N o t i f y i n g L o c a l R e q u e s t H a n d l e r h a n d l e r =

p e e r . g e t H a n d l i n g (I S e r v e r R e q u e s t H a n d l e r
.HANDLINGNAME) . f i r s t () ;

/ / b r o a d c a s t r e q u e s t
h a n d l e r . h a n d l e L o c a l R e q u e s t (r e q u e s t) ;

}

Figure 5.11: Example peer service method pseudo implementation.

<?xml version="1.0" encoding="UTF-8" ?>

<message>

<data data="org.ximtec.iserver.p2p.data.OMCollectionReflectionQuery"

className="org.ximtec.iserver.core.Entity" methodName="sources">

<parameterClasses />

<parameterObjects />

<instanceObject>

<omInstance omInstanceName="entity">

<entity>

<name>African Savannah</name>

<creator>

<authorised />

<unauthorised />

<properties />

</entity>

</omInstance>

</instanceObject>

</data>

<user user="org.ximtec.iserver.p2p.data.User">

<string>ombak</string>

</user>

</message>

Figure 5.12: Example user request message sent by a requesting peer.

66 5.5. EXAMPLE USAGE

<?xml version="1.0" encoding="UTF-8" ?>

<message>

<data data="org.ximtec.iserver.p2p.data.OMCollectionResponse">

<omCollection omTypeName="entity">

<omInstance omInstanceName="entity">

<entity>

<name>Background Buffalo</name>

<creator>

<authorised />

<unauthorised />

<properties />

</entity>

</omInstance>

<omInstance omInstanceName="entity">

<entity>

<name>Background Cheetah</name>

<creator>

<authorised />

<unauthorised />

<properties />

</entity>

</omInstance>

</omCollection>

</data>

<user user="org.ximtec.iserver.p2p.data.User">

<string>ombak</string>

</user>

<status status="org.ximtec.iserver.p2p.data.Status">

<integer>0</integer>

<string>request processed successfully</string>

</status>

</message>

Figure 5.13: Example user response message sent by a peer replying on the request.

CHAPTER 5. IMPLEMENTATION OF A PEER SERVICE FOR ISERVER 67

Figure 5.14: Peer GUI, panel for log messages.

68 5.5. EXAMPLE USAGE

Figure 5.15: Peer GUI, panel showing list of user validities.

CHAPTER 5. IMPLEMENTATION OF A PEER SERVICE FOR ISERVER 69

Figure 5.16: Peer GUI, panel visualising the graph of user ratings.

70 5.5. EXAMPLE USAGE

6
Conclusions

6.1 Goals and Results

The goal of this diploma thesis was to design and implement a collaborative iServer informa-
tion space. The information stored in different iServer instances is to be shared dynamically.
The iServer architecture is a platform enabling linking of arbitrarily typed objects. It provides
a metamodel defining fundamental link concepts which allow to flexibly structure and link
information spaces. The resulting iServer web service and peer-to-peer implementations are
based on a generalised interaction architecture. This architecture consists of five components
each of them abstracting a particular aspect of interaction in a collaborative information sys-
tem. Its main achievement is to facilitate the implementation of remote access transparent to
the users. In this section we present the main stages of this diploma thesis and discuss the
results.

Investigation of iServer, the JXTA P2P framework and the current iServer P2P proto-
type. With the help of Signer’s [14] publication we quickly familiarised with the iServer
architecture, its concepts and philosophy. We found good introductory literature [16] as well
as helpful technical manuals on JXTA technology [11]. Heinzer [6] had previously compared
various peer-to-peer technologies which allowed us to focus on JXTA from the beginning.
As a result of this stage we designed and implemented a generalised architecture for dis-
tributed information systems. After analysing the most commonly used remote interaction
frameworks such as web service and peer-to-peer we identified five independent components
that make up interaction between participants of a distributed information system. Each of
these components can be extended or altered independently which makes our architecture
flexible and adjustable to specific application requirements.

Implementation of an iServer web service interface based on the available iServer XML
object representation. Definition of a web service API and a query interface for iServer.
Due to the results from the previous stage and a short period of familiarisation with web ser-

71

72 6.1. GOALS AND RESULTS

vice concepts we were quickly able to set up an iServer web service. The interface defines
a web service method for each iServer API method. Such a method takes the required para-
meters as XML string representations conforming to the iServer XML schema definitions. It
returns the result wrapped with a message that also includes information about the processing
of the request, i.e. an error code and message. The web service class starts up the database
to be used automatically. All preferences — mainly the name and location of the database —
can be set in a configuration file.
Our web service implementation fully benefits from the flexibility of the interaction architec-
ture designed in the previous stage. The service functionality offered to a client, the encoding
of parameter objects and returned messages as well as the content of a response message can
be adjusted easily. The web service can also be integrated into a user management system
since our architecture defines classes to transmit user information contained in objects of any
type.

Implementation of a distributed iServer version based on findings from an earlier
iServer P2P prototype. We implemented an iServer P2P system based on our interaction
architecture. The components implemented for the web service could be used with little
adaptations only. Due to the flexibility of the components they could easily be integrated
into the JXTA framework. Nevertheless the development of the peer-to-peer system turned
out to be a complex and challenging undertaking. Multiple redesigns were inevitable but
the partitioning of the functionality into independent components as well as exhaustive unit
testing helped to accept the challenge.
The JXTA framework proved to be a very powerful framework facilitating the implementation
of a peer-to-peer application as much as possible. Due to the restrictions of console input and
output we decided to implement a graphical user interface for debug purposes. This interface
evolved to an iServer P2P managing system while still being an optional feature.

Development of a component for the rating and filtering of information exchanged
in the collaborative iServer environment. In a community of iServer instances a request
potentially generates multiple responses. Nevertheless not all of the responses are equally
valuable. Experiences with other peer-to-peer networks such as file sharing have revealed
some problems associated with decentralised and democratic publishing and consuming of
content. Some members of the community tend to consume without publishing while others
publish unsolicited or malicious content. These problems have been addressed in the previous
iServer P2P prototype implemented by Heinzer [6] by introducing a filtering of responses.
We have implemented a user rating management where ratings are propagated across the
community. Each member stores a local snapshot of all currently exiting ratings which allows
him to transitively follow sequences of ratings. Thus a member can infer the trustworthiness
of another member he has not explicitly rated.
We have implemented a response filtering based on user rating, frequency analysis and arbi-
trary criteria that can be expressed as a function of the set of responses received each coupled
with the responding user. The rating architecture has mainly been taken over from Heinzer’s
work where it had been designed to enable a wide variety of filtering methods. Once ini-
tialised the filtering is achieved transparently to the user.

CHAPTER 6. CONCLUSIONS 73

6.2 Future Work

Collaborative information sharing currently gives rise to new approaches in the area of in-
formation systems. Taking our interaction architecture and peer-to-peer technologies as a
starting point, we propose to broaden the concepts developed in this work to support a wider
range of information systems. The architecture proved to be a functional abstraction of col-
laborative interaction within iServer P2P. We believe that the application to other platforms
would help to further improve its generalisation ability. Components may have to be added,
removed or altered to increase flexibility and extendibility.
Decentralised and democratic information sharing as suggested by a peer-to-peer architecture
raises questions some of which have been resolved superficially in the scope of this work.
Problems such as object identity across database instances implementing a common schema,
object transfer between database instances with differing schemas as well as the automatic
filtering based on user and object content rating must be addressed more exhaustively.
We also suggest to investigate new application areas where collaborative information sharing
can profit from acquisitions in mobile and ubiquitous computing and, vice versa, current
technologic developments can be enriched with collaboration facilities.

74 6.2. FUTURE WORK

A
User’s Manual

In this section we give the information necessary to run iServer web and peer service. Further
guidance about the employment of specific classes can be found in the Javadoc documentation
and unit test classes.

A.1 iServer Web Service

For setting up an iServer web service we recommend to follow the steps five till nine in the
web service tutorial appended in Appendix B. The following packages must be accessible to
the deployed service:

• org.sigtec.iserver.iserver.p2p.architecture

• org.sigtec.iserver.iserver.p2p.data

• org.sigtec.iserver.iserver.p2p.jdom

• org.sigtec.iserver.iserver.p2p.messaging

• org.sigtec.iserver.iserver.p2p.resource

• org.sigtec.iserver.iserver.p2p.webservice

A javax.xml.transform.TransformerFactoryConfigurationError cur-
rently causes an exception with JDK 1.5. We found a fix for this problem in the
Sun Developer Network [15]: The xml-apis.jar file must be removed from the
Tomcat/common/endorsed/ directory.
The web service starts the iServer database independently, thus its name and location must be
set in the configuration file config.properties. All configuration files can be found in
Tomcat/bin/. If any configuration file does not exist it will be created on the first start up

75

76 A.1. ISERVER WEB SERVICE

and filled with default settings. If it exists, the preferences are read from it. All other settings
besides the name and location of the database do not need to be adjusted for regular usage.
In Fig. A.1 we present Java code that consumes an iServer web service API method. The
method takes no parameters, thus it can be executed without further preparations.

/ / example i S e r v e r web s e r v i c e URL
URL iServerURL =

new URL(
"http://localhost:8081/iServerWebService/

services/iServerWebService"
) ;

/ / g e t t h e web s e r v i c e
I S e r v e r W e b S e r v i c e S e r v i c e i S e r v e r S e r v i c e =

new I S e r v e r W e b S e r v i c e S e r v i c e L o c a t o r () ;
I S e r v e r W e b S e r v i c e i S e r v e r =

i S e r v e r S e r v i c e . g e t I S e r v e r W e b S e r v i c e (iServerURL) ;

/ / consume a web s e r v i c e method
S t r i n g r e s p o n s e = i S e r v e r . i S e r v e r C o l l e c t i o n E n t i t i e s () ;

Figure A.1: Java code that consumes an iServer web service requiring no parameters.

In Fig. A.2 the consumed web service method requires one parameter of type Entity. The
parameter object instance is prepared by interacting with the example iServer database.
It is then transformed into its XML string representation.

APPENDIX A. USER’S MANUAL 77

A.2 iServer Peer Service

The main class for starting up an iServer peer is iServerP2P. It defines a
main(String[]) method that creates and runs an iServerP2P object. Following is
a list of its arguments:

• User name (e.g. ”Fred Astaire”): A User object currently consists of a string which is
given as argument.

• Display GUI (e.g. true): ∈ (false, true). Starts the GUI if true.

• Stream to host (e.g. 127.0.0.1): Host to which messages received and log messages are
streamed.

• Stream to port (e.g. 2781): See Stream to host argument.

• Receive stream on port (e.g. 2781): Where a server listens for streamed messages and
log messages to be displayed.

The first argument is mandatory. All other arguments can be omitted (all of them or none of
them) in which case no GUI is shown.
An object of this class can also be created using its constructor. The constructor takes the
same arguments as the main method.
All preferences that can be set by the user are stored in configuration files named
config.properties and configP2P.properties. If any of these files does not
exist it will be created on the first start up and filled with default settings. If they exist the
preferences are read from them. Most importantly, the iServer database name and location
must be set according to the database to be used. No other settings must be adjusted for regu-
lar usage. Most settings must be adjusted carefully since all peers must have them in common
in order to be able to communicate properly.
The user validities and ratings are stored in a file created on the first start up and maintained
to always contain the validities and ratings currently shared by all peers. Note that if these
files are edited while the iServer peer service is running, the changes will not be propagated
and they will be lost as soon as the local peer receives a validity/rating update from any other
member of the group. The service must be stopped while editing and restarted afterward.
The creation of a iServerP2P object will automatically start JXTA. During the first startup
a window is shown where preferences can be set. Figures A.3 and A.4 show two panels
contained in this window where something has to be set. A red asterisk denotes a field that
has to be configured in addition to the default settings. In case a peer does not seem to
communicate with other members of the group the .jxta folder may be erased and the peer
restarted.
The iServerP2P class features the iServer peer service methods that can be called once
the object is initialised. Each of these methods returns an integer value identifying the request
that has been sent. A selection of the responses received can be retrieved with the method
getResponses(int) where the argument identifies the request to which the responses
are to be returned.
Figure A.5 shows the Java code starting up an iServerP2P object with its GUI. The object
is kept alive until the user kills it. No requests are sent but incoming requests are processed.

78 A.2. ISERVER PEER SERVICE

In Fig. A.6 we present the code necessary to start up an iServer peer that broadcasts a request
to all other members of the group and accesses a selection of the responses. The GUI is
started as well.

APPENDIX A. USER’S MANUAL 79

/ / example i S e r v e r DB s t a r t u p
S t r i n g a p p l i c a t i o n N a m e = "naturalHistory" ;
S t r i n g a p p l i c a t i o n R o o t = "D:/Develop/db" ;

D a t a b a s e . s e t A p p l i c a t i o n N a m e (a p p l i c a t i o n N a m e) ;
D a t a b a s e . s e t A p p l i c a t i o n R o o t (a p p l i c a t i o n R o o t) ;
D a t a b a s e . g e t P r o p e r t i e s () ;

/ / an example E n t i t y o b j e c t
S t r i n g en t i t yName = "African Savannah" ;
OMCol lec t ion c o l l e c t i o n =

I S e r v e r . c o l l e c t i o n E n t i t i e s () . s e l e c t (
"name" , "=" , en t i t yName) ;

OMInstance i n s t a n c e = c o l l e c t i o n . g e t F i r s t I n s t a n c e () ;

/ / example iServerURL
URL iServerURL =

new URL(
"http://localhost:8081/iServerWebService/

services/iServerWebService"
) ;

/ / g e t t h e web s e r v i c e
I S e r v e r W e b S e r v i c e S e r v i c e i S e r v e r S e r v i c e =

new i S e r v e r W e b S e r v i c e S e r v i c e L o c a t o r () ;
I S e r v e r W e b S e r v i c e i S e r v e r =

i S e r v e r S e r v i c e . g e t I S e r v e r W e b S e r v i c e (iServerURL) ;

/ / c r e a t e XML s t r i n g r e p r e s e n t a t i o n o f p a r a m e t e r
Document document =

new Document (XMLElementFactory . toXML (i n s t a n c e)) ;
XMLOutputter o u t =

new XMLOutputter () ;
S t r i n g r e q u e s t = o u t . o u t p u t S t r i n g (document) ;

/ / consume web s e r v i c e
S t r i n g r e s p o n s e = i S e r v e r . e n t i t y S o u r c e s (r e q u e s t) ;

Figure A.2: Java code that consumes an iServer web service requiring an Entity object as
parameter.

80 A.2. ISERVER PEER SERVICE

*
*
*

Figure A.3: Configuration user interface of JXTA. The fields marked with a red asterisk must
be set in addition to the default settings.

APPENDIX A. USER’S MANUAL 81

*

Figure A.4: Configuration user interface of JXTA. The box marked with a red asterisk must
be checked in addition to the default settings.

82 A.2. ISERVER PEER SERVICE

/ / example i S e r v e r DB s t a r t u p
S t r i n g a p p l i c a t i o n N a m e = "naturalHistory" ;
S t r i n g a p p l i c a t i o n R o o t = "D:/Develop/db" ;

D a t a b a s e . s e t A p p l i c a t i o n N a m e (a p p l i c a t i o n N a m e) ;
D a t a b a s e . s e t A p p l i c a t i o n R o o t (a p p l i c a t i o n R o o t) ;
D a t a b a s e . g e t P r o p e r t i e s () ;

/ / c r e a t e a u s e r
User u s e r = new User ("Fred Astaire") ;

t r y {

/ / c r e a t e peer , group , r e g i s t e r h a n d l e r s e t c . . .
I S e r v e r P 2 P p e e r = new I S e r v e r P 2 P (use r , true ,

I S e r v e r P 2 P .LOGTOHOST, I S e r v e r P 2 P .LOGTOPORT,
I S e r v e r P 2 P .LOGFROMPORT) ;

/ / . . . and w a i t
whi le (t rue) {

Thread . s l e e p (2 0 0 0) ;
}

} ca tch (E x c e p t i o n e) {
e . p r i n t S t a c k T r a c e ()) ;

}

Figure A.5: Java code to start an iServer peer service waiting to interact with other peers.

APPENDIX A. USER’S MANUAL 83

/ / example i S e r v e r DB s t a r t u p
S t r i n g a p p l i c a t i o n N a m e = "naturalHistory" ;
S t r i n g a p p l i c a t i o n R o o t = "D:/Develop/db" ;

D a t a b a s e . s e t A p p l i c a t i o n N a m e (a p p l i c a t i o n N a m e) ;
D a t a b a s e . s e t A p p l i c a t i o n R o o t (a p p l i c a t i o n R o o t) ;
D a t a b a s e . g e t P r o p e r t i e s () ;

/ / c r e a t e a u s e r
User u s e r = new User ("Fred Astaire") ;

/ / an example E n t i t y o b j e c t
S t r i n g en t i t yName = "African Savannah" ;
OMCol lec t ion c o l l e c t i o n =

I S e r v e r . c o l l e c t i o n E n t i t i e s () . s e l e c t (
"name" , "=" , en t i t yName) ;

OMInstance i n s t a n c e = c o l l e c t i o n . g e t F i r s t I n s t a n c e () ;

t r y {
/ / c r e a t e peer , group , r e g i s t e r h a n d l e r s e t c . . .
I S e r v e r P 2 P p e e r = new I S e r v e r P 2 P (use r , true ,

I S e r v e r P 2 P .LOGTOHOST, I S e r v e r P 2 P . LOGTOPORT,
I S e r v e r P 2 P .LOGFROMPORT) ;

/ / . . . , r e q u e s t . . .
i n t r e q u e s t I D = p e e r . e n t i t y S o u r c e s ((E n t i t y) i n s t a n c e) ;

/ / . . . g e t r e s p o n s e s . . .
C o l l e c t i o n <Response> r e s p o n s e s =

p e e r . g e t R e s p o n s e s (r e q u e s t I D) ;

/ / . . . and w a i t
whi le (t rue) {

Thread . s l e e p (2 0 0 0) ;
}

} ca tch (E x c e p t i o n e) {
e . p r i n t S t a c k T r a c e ()) ;

}

Figure A.6: Java code to start an iServer peer service that requests another peer’s iServer
database.

84 A.2. ISERVER PEER SERVICE

B
Web Service Tutorial

In this chapter we put a tutorial for web services that was written by Michael Grossniklaus in
HTML format.

B.1 Translator Web Service

This website describes the Translator Web Service developed at the Global Information
Systems Group at the Swiss Federal Institute of Technology. This Web Service was imple-
mented for educational purposes only and cannot be used commercially. On this website you
can download the entire Translator Web Service including two clients.

B.1.1 Overview

The Translator Web Service provides a simple interface that allows translating strings from
one language into another. The exact description of the interface can be found in the Web
Service’s wsdl file.

B.1.2 Demo

To get a notion of the capabilities of the Translator Web Service you may download a
demo application. Save translator.jar to your hard disk and unzip it. This will create a new
directory webservice in which you will find start-up scripts for Windows and UNIX. Change
to the webservice directory and execute either translator.bat or translator.sh.

When everything is working you should see the window shown in Fig. B.1 appear on your
screen.
Congratulations, you have successfully installed your Translator Web Service client. If you
have problems check that the following requirements are satisfied on your system.

85

86 B.2. IMPLEMENTING THE TRANSLATOR WEB SERVICE WITH APACHE AXIS

Figure B.1: Translator user interface.

• Do you have a recent version (at least version 1.3.0) of the Java Runtime Environment
installed on your system?

• Did you add the path to the java binary to your path environment variable? This can
easily be checked by opening a command prompt and typing ”java”. If the system
tells you that it cannot find the requested application, modify your path environment
variable.

• The websevice/lib directory should contain the newest version of Apache Axis, Apache
Xerces.

B.1.3 Instructions to run it on your Machine

If you are interested in the Translator Web Service and running Web Services in general read
Sect. B.2 containing detailed instructions on how to implement and build this Web Service.

B.2 Implementing the Translator Web Service with Apache Axis

This page takes you through the steps necessary to implement the Translator Web Service
with Apache Axis 1.1 and publish it on your Apache Tomcat 4.x application server. This
is no tutorial on how to install Apache Tomcat or Apache Axis. Make sure that you have
installed these packages and that they are working properly. Refer to the respective tutorials
and installation manuals if you are not sure whether you meet these prerequisites.

B.2.1 Step One: Implement a Java class

Each Web Service is described by a wsdl file which contains the Web Service’s interface in
XML. Therefore, when implementing a Web Service from scratch it is important to focus on
the interface the service should offer. From this interface a wsdl file has to be generated. Of
course, this could be done by hand, but the Apache Axis distribution provides a much more
elegant way.

APPENDIX B. WEB SERVICE TUTORIAL 87

Instead of writing wsdl files by hand, we will use the Java2WSDL tool from Apache Axis. To
use this tool however we first must implement a small Java class or interface with all methods
that should be available on the Web Service.
The necessary class for the Translator Web Service example is displayed in Fig. B.2.
Copy the source code into a file named Translator.java and compile it using the javac binary
which is part of the Java Development Kit (JDK). If you manage to complete this proce-
dure without any errors you have successfully completed the first step in creating your own
Translator Web Service.

package ch . e t h z . g l o b i s . demo . t r a n s l a t o r ;

p u b l i c i n t e r f a c e T r a n s l a t o r {

/ * *
* R e t u r n s t h e g i v e n t e x t s t r i n g t r a n s l a t e d a c c o r d i n g
* t o t h e s p e c i f i e d l a n g u a g e p a i r .
* @param t e x t
* o r i g i n a l t e x t
* @param sLang
* s o u r c e l a n g u a g e of t h e o r i g i n a l t e x t
* @param tLang
* t a r g e t l a n g u a g e of t h e r e t u r n e d t r a n s l a t i o n
* @return t r a n s l a t e d t e x t
* /

p u b l i c S t r i n g g e t T r a n s l a t i o n (S t r i n g t e x t , S t r i n g sLang ,
S t r i n g tLang) throws E x c e p t i o n ;

}

Figure B.2: Necessary class for the Translator Web Service example.

B.2.2 Step Two: Generate a WSDL File

The next step is to generate a wsdl file from the above Java class. As already mentioned there
is a tool called Java2WSDL included in the Apache Axis distribution which does exactly that.
The tool is located in the org.apache.axis.wsdl package.
In Fig. B.3 the call to Java2WSDL to generate the wsdl file for our Translator Web Service
example is illustrated. The command is split onto several lines for convenience only. To
execute Java2WSDL just type it as one line!
If you have done everything right up to now, the above command generates the appropriate
wsdl file. If not, here are some hints and explanations what is going on and may be wrong!

• The most common mistake when working with Java is a wrong class path. The class-
path in the above example is set explicitly to the current directory and some jar files

88 B.2. IMPLEMENTING THE TRANSLATOR WEB SERVICE WITH APACHE AXIS

j a v a −cp ” . ; a x i s . j a r ; commons−d i s c o v e r y . j a r ;
commons−l o g g i n g . j a r ; j a x r p c . j a r ;
l o g 4 j −1 . 2 . 4 . j a r ; s a a j . j a r ; w s d l 4 j . j a r ; ”

o rg . apache . a x i s . wsdl . Java2WSDL
−n ” urn : T r a n s l a t o r ”
−o ” T r a n s l a t o r . wsdl ”
− l ” h t t p : / / l o c a l h o s t : 8 0 8 0 / t r a n s l a t o r /

s e r v i c e s / T r a n s l a t o r ”
−p ” ch . e t h z . g l o b i s . demo . t r a n s l a t o r ”

” urn : T r a n s l a t o r ”
−s ” T r a n s l a t o r ”
ch . e t h z . g l o b i s . demo . t r a n s l a t o r . T r a n s l a t o r

Figure B.3: Call to Java2WSDL to generate the wsdl file for our Translator Web Service
example.

containing the required libraries. Make sure you have all these files and that their path
is correctly included into the classpath.

• If you changed the package name of the class given in the first step, then you should
change the value of the p parameter as well as the class included on the last line of the
above example to reflect the changes you’ve made.

• Should you feel uncertain about the values given to the parameters of Java2WSDL
above, please consult the documentation of Java2WSDL included in the Apache Axis
user’s guide.

B.2.3 Step Three: Generate Client and Server Java Classes

Next, we want to implement a Web Service and a client application, that communicate using
the interface defined in step one. As we are already in possession of a wsdl file specifying
this interface, we can again let Apache Axis do some work. Included in the distribution is a
tool called WSDL2Java that takes a wsdl file and generates the following.

• Server side bindings

• Client side stubs

• Deployment files to deploy and undeploy the Web Service on Apache Axis

As with Java2WSDL before, the call to WSDL2Java is quite complex. To make it easier for
you the version as required by our example is illustrated in Fig. B.4.
Again, if there should be any problem check if the points given in the section before are
correct. If so the tool will create the following files

• Translator.java: This file contains a new version of the interface defined by us in step
one. It replaces the before implemented interface, but instead of a simple copy, this
version also includes the appropriate uses of the java.rmi package.

APPENDIX B. WEB SERVICE TUTORIAL 89

j a v a −cp ” . ; a x i s . j a r ; commons−d i s c o v e r y . j a r ;
commons−l o g g i n g . j a r ; j a x r p c . j a r ;
l o g 4 j −1 . 2 . 4 . j a r ; s a a j . j a r ; w s d l 4 j . j a r ; ”

o rg . apache . a x i s . wsdl . WSDL2Java
−s
−S
−o ” . ”
−d S e s s i o n
−N ” urn : T r a n s l a t o r ” ” ch . e t h z . g l o b i s . demo . t r a n s l a t o r ”
T r a n s l a t o r . wsdl

Figure B.4: Call to WSDL2Java.

• TranslatorService.java: Abstract representation of the the Web Service. This Java in-
terface provides methods to get a Translator object from the Web Service that complies
to the specification according to the Translator.java interface.

• TranslatorServiceLocator.java: Concrete implementation of the TranslatorService in-
terface. This class stores the default location of the Web Service and provides utility
methods to query the Web Service for ports based on service endpoint interfaces.

• TranslatorSoapBindingStub.java: Client side implementation of the Web Service in-
terface containing all necesserary calls to establish remote communication. The stub
implements interface TranslatorPortType.

• TranslatorSoapBindingSkeleton.java: Server side skeleton class that is deployed onto
the Apache Tomcat application server. This class offers the methods specified in our
original interface.

• TranslatorSoapBindingImpl.java: Actual implementation of the Web Service’s func-
tionality on the server side. In this file we will have to insert our implementation in the
next step.

• deploy.wsdd: Deployment descriptor for our Web Service containing the appropriate
classes and namespaces.

• undeploy.wsdd: Undeployment descriptor to remove the Web Service from Apache
Axis.

Note: Before executing WSDL2Java it is useful to backup and remove the original source of
class Translator.java. Otherwise it won’t be generated by the tool.

B.2.4 Step Four: Fill in the Blanks

Two things remain to be implemented. First we’ll have to change the source code of class
TranslatorSoapBindingImpl.java. Although the WSDL2Java tool generated a correct class
that can be compiled, it didn’t include the functionality as imagined by us. Consequently

90 B.2. IMPLEMENTING THE TRANSLATOR WEB SERVICE WITH APACHE AXIS

the source code of the generated class simply provides the default implementation shown in
Fig. B.5.

package ch . e t h z . g l o b i s . demo . t r a n s l a t o r ;

import j a v a . rmi . RemoteExcep t ion ;

p u b l i c c l a s s T r a n s l a t o r S o a p B i n d i n g I m p l implements T r a n s l a t o r {

p u b l i c S t r i n g g e t T r a n s l a t i o n (S t r i n g arg0 , S t r i n g arg1 ,
S t r i n g a rg2) throws RemoteExcep t ion {

re turn n u l l ;
}

}

Figure B.5: Source code of the generated TranslatorSoapBindingImpl class.

For reasons of compactness we will not display the resulting implementation of class Transla-
torSoapBindingImpl in full detail. The complete source code of the Translator Web Service
can be downloaded as a jar file. Please refer to the source code in this directory for further
details.

B.2.5 Step Five: Write a Client

To really see if the Web Service is working we will be needing a client that connects to the
Web Service and sends some queries. The simplest user interface is always a command line
based approach. The class included in Fig. refcode:Client implements a rudimentary text
based client for the Translator Web Service.
Note: When compiling the client, be sure to include the same jar files as above and the
directory where the client source code is located in your classpath.

B.2.6 Step Six: Setup Apache Tomcat 5.x

Before we can deploy the Web Service using the Apache Axis tools and the deployment de-
scriptors that were generated in step three, we must setup our Apache Tomcat 4.x application
server to host and run the Translator Web Service.
Note: In the following sections we will assume, that CATALINA HOME is an environment
variable set to the directory where you installed your Apache Tomcat 4.x server.
The first step in configuring the Apache Tomcat 4.x application server is to create an ap-
propriate directory where the code and setup of the Web Service will be stored. To do
so it is necessary to create the directory structure shown in Fig. B.7 as a subdirectory of
CATALINA HOME/webapps. The classes directory will afterward contain the compiled Java
classes of our Web Service that we implemented in the steps before. Directory lib will be
used to store all required libraries as jar files.

APPENDIX B. WEB SERVICE TUTORIAL 91

package ch . e t h z . g l o b i s . demo . t r a n s l a t o r ;

p u b l i c c l a s s T r a n s l a t o r T e x t C l i e n t {

p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {
t r y {

T r a n s l a t o r S e r v i c e t r a n s l a t o r S e r v i c e =
new T r a n s l a t o r S e r v i c e L o c a t o r () ;

T r a n s l a t o r t r a n s l a t o r = t r a n s l a t o r S e r v i c e .
g e t T r a n s l a t o r () ;

S t r i n g t e x t =
t r a n s l a t o r . g e t T r a n s l a t i o n (a r g s [0] , a r g s [1] ,

a r g s [2]) ;
System . o u t . p r i n t l n ("Translation: " + t e x t) ;

} ca tch (E x c e p t i o n e) {
System . o u t . p r i n t l n (e . ge tMessage ()) ;
e . p r i n t S t a c k T r a c e () ;

}
}

}

Figure B.6: A rudimentary text based client for the Translator Web Service.

The second step in setting up Apache Tomcat 4.x is to copy the classes and libraries necessary
to run the Translator Web Service on the application server to the appropriate directories.
The following list is a summary of the steps you need to execute to copy your code onto
Tomcat.

• Copy the ch (or whatever the root of your package hierarchy is) directory structure
containing all your compiled classes to the classes directory.

• Copy axis.jar, commons-discovery.jar, commons-logging.jar and wsdl4j.jar to the
CATALINA HOME/shared/lib directory on the application server.

• Copy log4j-1.2.4.jar to the CATALINA HOME/common/lib directory on the application

Figure B.7: Directory structure for Translator Web Service.

92 B.2. IMPLEMENTING THE TRANSLATOR WEB SERVICE WITH APACHE AXIS

server.

• Copy jaxrpc.jar and saaj.jar to the CATALINA HOME/common/endorsed directory on
the application server.

Note: These steps apply to a first time setup of the Web Service on the application server.
Once you have copied all these classes to the server directories, you will only need to re-copy
those classes that you change.
Note: Whenever you copy new code to your Apache Tomcat 4.x application server, it is
advisable to restart the server to make sure that the new classes are used.

B.2.7 Step Seven: Setup Apache Axis

On the Apache Tomcat 4.x application server there has to be a servlet that will be invoked
by Tomcat on incoming requests to the Web Service. This servlet will communicate with the
client via the SOAP protocol on behalf of our Web Service. The Apache Axis distribution
contains such a servlet called AxisServlet that acts as a SOAP wrapper for arbitrary Java
classes. The only thing we have to do is to tell Tomcat that it should use this servlet for our
Web Service. To do so, we put the file web.xml (Fig. B.8) into the WEB-INF in the Web
Service’s server directory.
Note: If you are familiar with Java Servlets and Apache Tomcat you should recognize this
procedure, as it is nothing related to Web Services specifically, but simply the general proce-
dure of installing a servlet on an application server.
You can already check if you have done everything correct up to now. Start your Apache
Tomcat 4.x server and open the URL http://localhost:8080/translator/services/AdminService
in your webbrowser. Among other information, you should see the message ”Hi there, this is
an AXIS service!”.
Note: If you don’t get to this page, try restarting your Apache Tomcat application server after
modifying the file web.xml.

B.2.8 Step Eight: Deploy the Translator Web Service

Right now we have Tomcat and Axis running and the whole Translator Web Service code
is on the application server. The only missing part is the link between Apache Axis and our
code. This link is important because in the end, the AxisServlet has to know to which classes it
has to forward the request. This configuration information is stored in the WEB-INF directory
in an xml file called server-config.wsdd.
Again it would be possible to create and edit this file by hand, but Apache Axis provides
us with a much more elegant and automatic way of creating this file. The AdminClient tool
included in the Apache Axis distribution uses the deployment descriptors created in step three
to deploy a Web Service at a given URL. For our example the appropriate command is given
in Fig. B.9.
When typing the above command, you should see the output shown in Fig. B.10 in your
command prompt.
Note: If you don’t succeed to deploy the Web Service using the AdminClient, make sure
that you are able to access the URL http://localhost:8080/translator/services/AdminService
in your webbrowser. If you see an exception when requesting this page, make sure, that

APPENDIX B. WEB SERVICE TUTORIAL 93

 <?xml version="1.0" encoding="ISO-8859-1" ?>
 <!DOCTYPE web-app (View Source for full doctype...)>
 <web-app>
 <display-name>Apache-Axis</display-name>
 <servlet>
 <servlet-name>AxisServlet</servlet-name>
 <display-name>Apache-Axis Servlet</display-name>
 <servlet-class>org.apache.axis.transport.http.AxisServlet</servlet-class>

 </servlet>
 <servlet>
 <servlet-name>AdminServlet</servlet-name>
 <display-name>Axis Admin Servlet</display-name>
 <servlet-class>org.apache.axis.transport.http.AdminServlet</servlet-class>
 <load-on-startup>100</load-on-startup>

 </servlet>
 <servlet-mapping>
 <servlet-name>AxisServlet</servlet-name>
 <url-pattern>/servlet/AxisServlet</url-pattern>

 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>AxisServlet</servlet-name>
 <url-pattern>*.jws</url-pattern>

 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>AxisServlet</servlet-name>
 <url-pattern>/services/*</url-pattern>

 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>AdminServlet</servlet-name>
 <url-pattern>/servlet/AdminServlet</url-pattern>

 </servlet-mapping>
 </web-app>

Page 1 of 1

5/5/2005file://C:\Documents and Settings\alex\Desktop\deleteMe.xml

Figure B.8: File web.xml.

you have copied all necessary libraries to the directories described above. For some peculiar
mechanisms in the Tomcat classloader Axis does not work, if you copy the jar files to the Web
Service’s lib directory instead of using the global CATALINA HOME/common/lib directory!
Note: Again, now would be a good point in time to restart your Apache Tomcat 4.x applica-
tion server.

B.2.9 Step Nine: Give it a Test Drive!

Finally after all the work the Web Service is up and running and ready for a test drive. To
see if everything was set up correctly we use the client implemented in step five. After it is
compiled, we can invoke the client as shown in Fig. B.11 with three arguments. The first
argument is the text we want to translate, the second is the source language of this text and
the third parameter is the target language into which the Translator Web Service should
translate the text.
After having typed the above command at the command prompt, the output shown in
Fog.B.12 should appear on the console window.
Congratulations! You have successfully implemented and installed your own version of the

94 B.2. IMPLEMENTING THE TRANSLATOR WEB SERVICE WITH APACHE AXIS

j a v a −cp ” . ; a x i s . j a r ; commons−d i s c o v e r y . j a r ;
commons−l o g g i n g . j a r ; j a x r p c . j a r ;
l o g 4 j −1 . 2 . 4 . j a r ; s a a j . j a r ; w s d l 4 j . j a r ; ”

o rg . apache . a x i s . c l i e n t . AdminCl ien t
de p l oy . wsdd
− l ” h t t p : / / l o c a l h o s t : 8 0 8 0 / t r a n s l a t o r /

s e r v i c e s / AdminService ”

Figure B.9: Command to deploy our Translator Web Service.

P r o c e s s i n g f i l e de p l oy . wsdd
<Admin>Done p r o c e s s i n g </Admin>

Figure B.10: Output created by deployment command if successful.

Translator Web Service. Using these nine steps, you will be able to implement, deploy and
run any Web Service you are planning to create in the future!

j a v a −cp ” . ; a x i s . j a r ; commons−d i s c o v e r y . j a r ;
commons−l o g g i n g . j a r ; j a x r p c . j a r ;
l o g 4 j −1 . 2 . 4 . j a r ; s a a j . j a r ; w s d l 4 j . j a r ; ”

ch . e t h z . g l o b i s . demo . t r a n s l a t o r . T r a n s l a t o r T e x t C l i e n t
” H e l l o World ! ”
” en ”
” de ”

Figure B.11: Invocation of web service client.

APPENDIX B. WEB SERVICE TUTORIAL 95

T r a n s l a t i o n : H a l l o Welt !

Figure B.12: Output of web service client invocation.

96 B.2. IMPLEMENTING THE TRANSLATOR WEB SERVICE WITH APACHE AXIS

C
Alternative Request Pattern

In this section we propose another request pattern that is based on OMSJava constructs such
as OMCollection and OMAssociation. The query classes implementing this request
pattern can easily be used instead of the query classes proposed in Sect. 3.2.
We believe that the request pattern proposed in this section can be used to allow remote query-
ing on an OMS [13] database implementing an arbitrary schema. As explained in Chapt. 2
we assume a request factory that offers static methods customised to a particular schema and
returning appropriate query objects. With the employment of our interaction architecture the
factory is the only class bound to a database schema. Hence it becomes very simple to ad-
just a web or peer service to various database schemas. With this request pattern, queries of
arbitrary complexity can be processed and their result returned within one request response
cycle. This is achieved by allowing the nesting of query objects.

C.1 Introductory Examples

We derive our request pattern by defining some useful queries specific to the iServer schema.
A complete presentation of the iServer schema can be found in Signer’s publication [14].
Throughout this section we focus on the entity modeling and neglect the user management
and layers schema.
An entity object can be identified by its name, its type and its sources / targets of all incoming
/ outgoing associations. Thus, if we are to design an entity query facility, we should offer
the possibility to identify an entity through any of its attributes and any association in which
entities are either a source or target collection. The signature of a method implementing
entities selection could be designed as follows:

OMCollection selectEntities(String name
, String type
, OMAssociation HasProperty
, OMAssociation HasSource

97

98 C.1. INTRODUCTORY EXAMPLES

, OMAssociation HasTarget)

This method would return an OMCollection containing all entity objects selected accord-
ing to the parameter objects. For convenient usage we say that a null valued parameter does
not affect the selection. The following example selects all entity objects named ”African
Savannah”:

selectEntities("African Savannah", null, null, null, null)

Proceeding in the same manner as for entity selection we define a query method specific to
link objects. A link object can be identified through the properties inherited from the entity
type and through members of the HasSource and HasTarget associations in which it
must be in their domain. Following is the signature of the method:

OMCollection selectLinks(OMCollection Entities
, OMAssociation HasSource
, OMAssociation HasTarget)

The first parameter allows the selection of link objects according to their values of properties
inherited from the entity type. We use the selectEntities(...) method defined above
to select all links according to the entity attribute values. The resulting collection is given
as the first parameter of the selectLinks(...) method. The evaluation of the latter
includes a simple intersection of the OMCollection containing all entities selected by
their attribute values and the Links collection containing all link objects. As an example we
give the query for all link objects with an arbitrary name we refer to as [linkname]:

selectLinks(
selectEntities([linkname], null, null, null, null)

, null, null)

Now we have to define the evaluation of selection according to membership in domain or
range collections of OMAssociation parameters. We derive the evaluation procedure us-
ing an example selection of HasSource associations. An association can be identified by
a member of the domain and range collection. Hence, we define the signature of the method
implementing the HasSource association selection as follows:

OMAssociation selectHasSource(OMCollection domain
, OMCollection range)

Since the domain and range collection of the HasSource association contains entity objects
we can use the selectEntities(...) method to define the parameters. As an example
we select all HasSource associations that point to the entity named ”African Savannah”:

selectHasSource(null,
selectEntities("African Savannah", null, null,

null, null)
)

APPENDIX C. ALTERNATIVE REQUEST PATTERN 99

The evaluation of this query can be accomplished by performing a range restriction on the
OMAssociation collection requiring the range collections of the resulting associations to
contain the same member entities as the collection resulting from the nested entity selection.
In general an association selection is processed by performing a domain restriction with the
domain parameter and a range restriction using the range parameter.
So far we have presented methods to select members of a collection according to attribute
values, membership in another collection and a method to perform association selection. We
give an example of how these methods can be combined to select all sources of links having
entities named ”African Savannah” as targets:

selectEntitities(null, null, null,
selectHasSource(

selectLinks(null, null,
selectHasTarget(null,

selectEntities("African Savannah", null, null,
null, null)

)
)

, null)
, null)

The innermost query returns a collection containing all entities named ”African Savannah”
which is used as the range restriction criteria for the selectHasTarget(...) method.
The collection of associations returned by the latter is intersected with all HasTarget as-
sociations in the selectLinks(...) method which returns a collection containing the
link objects resulting from the intersection. This collection is now used to perform a domain
restriction on the HasSource associations. The resulting collection of associations is inter-
sected with all HasSource associations in the outermost query which returns the resulting
entity objects as an OMCollection.

C.2 Generalised Query Model

After examination of the iServer API we observe that we can implement any querying API
method as a combination of the three different kinds of query methods introduced in the pre-
vious section. These methods are: query by attribute value, query by collection intersection
and query by association source / target collection intersection. In this section we propose
Java classes implementing these queries which can be used to construct general queries in-
dependent from a particular schema. Instead of having a parameterised method processing
the query we introduce uniform query objects initialised with the parameters. Thus, query
processing can be initiated by invoking a method requiring no parameters.
Figure C.1 shows the UML diagrams of the Java classes required for the implementation.
For now we disregard the fourth kind of query implemented by the QueryByMatching
class. We also ignore the QueryParameter superclass common to all query classes
in the beginning since its sense will become clear by explaining the functioning of the
QueryByCollection class.
The simplest class is the one implementing the query by attribute. It defines members con-
taining the name and value of the attribute after which objects of a particular type are to be

100 C.2. GENERALISED QUERY MODEL

+QueryParameter(source : OMCollection) : QueryParameter
+QueryParameter(query : Element) : QueryParameter
+processQuery() : OMCollection
+toXML() : Element

QueryParameter
-source : OMCollection

OMCollection OMAssociation Element

+QueryByAttribute(source : OMCollection, name : String, value : String) : QueryByAttribute
+QueryByAttribute(query : Element) : QueryByAttribute
+processQuery() : OMCollection
+toXML() : Element

-name : String
-value : String

QueryByAttribute

+QueryByMatching(source : OMCollection, toBeMatched : OMInstance) : QueryByMatching
+QueryByMatching(query : Element) : QueryByMatching
+processQuery() : OMCollection
+toXML() : Element

-toBeMatched : OMInstance
QueryByMatching

OMInstance

+QueryByCollection(source : OMCollection, parameters : Vector<QueryParameter>) : QueryByCollection
+QueryByCollection(query : Element) : QueryByCollection
+processQuery() : OMCollection
+toXML() : Element

-parameters : Vector<QueryParameter>
QueryByCollection

«datatype»
Vector<QueryParameter>

+QueryByAssociation(source : OMCollection, parameter : QueryParameter, target : OMCollection, association : OMAssociation) : QueryByAssociation
+QueryByAssociation(query : Element) : QueryByAssociation
+processQuery() : OMCollection
+toXML() : Element

-target : OMCollection
-association : OMAssociation

QueryByAssociation

Figure C.1: UML definition of nested querying classes.

queried. Note that these members allow a QueryByAttribute object to be used to query
for any type of object. Additionally, a member pointing to an OMCollection is inher-
ited from the superclass QueryParameter. The processQuery() method returns an
OMCollection containing all members of the member OMCollection source having
the correct attribute value. We can express this query in AQL as follows (we make use of the
names of the class member as defined in the UML diagram):

all O in source having(O.name = value)

Next we present the QueryByCollection class which implements the query by collec-
tion intersection. Its member property parameters is a vector of QueryParameter
objects. The QueryParameter class is an abstract class from which all query classes
inherit. Its main purpose within our current scope is to guarantee that every query class im-
plements a processQuery() method returning an OMCollection. The query is evalu-
ated by intersecting all parameter collections with the source collection inherited from the
QueryParameter superclass. In AQL the performed query can be described as

source intersect parameters[0] intersect ...
... intersect parameters[n]

APPENDIX C. ALTERNATIVE REQUEST PATTERN 101

The third query class is a subtype of the QueryByCollection class called
QueryByAssociation. As the name suggests it implements the query by association
domain / range collection intersection. Since we never need to access an association explic-
itly within iServer we modified the query evaluation such that it does not return a collection
of associations but the domain or range collection of the selected associations depending
whether a range or domain restriction is performed. Thus we can intersect the returned col-
lection with a collection resulting from any other kind of query and do not need to han-
dle intersections of unary and binary collections. Note that the source collection inher-
ited from the QueryParameter class always refers to the collection type returned by the
processQuery() method. The target collection member is the one that is intersected
with the parameter collection allowing a selection. In a first step we determine which of the
member collections source and target correspond to which of the association’s domain
and range. Depending on the outcome of this determination, the query is evaluated as follows:

// if (source == association.domain)
// && (target == association.range) :

domain(association range_restriction (
target intersect parameter

)

// else :

range(association domain_restriction (
target intersect parameter

)

The last query class has been introduced because, in an iServer web or peer service, we need
to match a local object with a remote object with which the remote iServer can be queried.
For example, if we want to get all sources of remote links containing a local entity as target we
first need to match the local entity to a remote entity before we can proceed querying for its
sources. The QueryByMatching class implements such a matching facility. Its member
xmlRepresentation is a representation of the local object. The source collection
member inherited from the QueryParameter class is searched for an object matching
the local object. The query evaluation returns an OMCollection containing the matching
object(s).
Figure C.2 shows the XML schema definition of the XML elements returned by the toXML()
method implemented by all query classes. The root element contains one top level query that
can be of any query type. The result of this top level query is returned with the response mes-
sage. The XML schema definition reflects the content container pattern implemented by the
Java classes hierarchy shown in Fig. C.1. The attributes of the XML elements are not visible
in the figure but they can be deduced from the Java classes. In the case of an application to the
iServer the xmlRepresentation element corresponds to a JDOM element as generated
by the iServer OMInstance objects.

102 C.3. EXAMPLE QUERY

C.3 Example Query

In this section we give an example query in terms of its XML representation (Fig. C.3)and
the corresponding query object constructions. As opposed to the previous example we now
query for all resources that are targets of links whose source entity has a name value ”African
Savannah”.
A query factory method selectTargetRessourcesBySourceEntity(String)
would be implemented as follows:

p u b l i c s t a t i c QueryPa rame te r
s e l e c t T a r g e t R e s s o u r c e s B y S o u r c e E n t i t y (S t r i n g en t i t yName){

Q u e r y B y A t t r i b u t e se lec tByName =
new Q u e r y B y A t t r i b u t e ("entities" , "name" ,

"African Savannah") ;
Q u e r y B y A s s o c i a t i o n s e l e c t L i n k s =

new Q u e r y B y A s s o c i a t i o n ("links" , "entities" ,
selectByName , "hasSource") ;

Q u e r y B y A s s o c i a t i o n s e l e c t E n t i t i e s =
new Q u e r y B y A s s o c i a t i o n ("entities" , "links" ,

s e l e c t L i n k s , "hasTarget") ;
Q u e r y B y C o l l e c t i o n s e l e c t R e s s o u r c e s =

new Q u e r y B y C o l l e c t i o n ("resources" ,
new QueryPa rame te r [] { s e l e c t E n t i t i e s }) ;

re turn s e l c t R e s s o u r c e s ;
}

APPENDIX C. ALTERNATIVE REQUEST PATTERN 103

XML definition of query

format for iServer peer to

peer / web service

queryMessage queryParameter

queryByAttributeType

queryByAttribute xmlRepresentation

queryByCollectionType

queryByCollection

1..

queryParameter

queryByAttributeType

queryByAttribute xmlRepresentation

queryByCollection

queryByAssociationType

queryByAssociation

1..

queryByMatchingType

queryByMatching xmlRepresentation

queryByAssociationType

queryByAssociation

1..

queryParameter

queryByAttributeType

queryByAttribute xmlRepresentation

queryByCollection

queryByAssociation

queryByMatchingType

queryByMatching xmlRepresentation

queryByMatchingType

queryByMatching xmlRepresentation

Figure C.2: XML schema definition for the XML elements generated by the toXML()
method implemented by all query classes.

104 C.3. EXAMPLE QUERY

- <queryMessage xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="query.xsd">

- <queryByCollection sourceCollection="Resources">

- <queryByAssociation sourceCollection="Entities" targetCollection="Links"

association="HasTarget">

- <queryByAssociation sourceCollection="Links" targetCollection="Entities"

association="HasSource">

- <queryByAttribute sourceCollection="Entities" name="name">

<xmlRepresentation>African Savannah</xmlRepresentation>

</queryByAttribute>

</queryByAssociation>

</queryByAssociation>

</queryByCollection>

</queryMessage>

Figure C.3: XML message encoding an example query according to the XML schema defin-
ition of the protocol schema

Acknowledgements

I would like to thank Beat Signer for supervising my diploma thesis. He patiently let me
discover my joy for the area by establishing a perfect balance of freedom and duty. The
meetings we had were always very helpful and I appreciated his feedback from reviewing my
report.
I am grateful to Prof. Moira C. Norrie for repeatedly giving me the opportunity to work on
a project and channeling my passions into accomplishing this thesis project. Furthermore, I
want to thank Michael Grossniklaus for patiently answering all my questions, Rudi Belotti
for inspiring me to design parts of my work as a general architecture and Melanie Raemy for
suggesting a graph algorithm to resolve transitive user rating.
Thanks to Teodora Zamfirescu for correcting my report and sticking with me despite my self
imposed unavailability in favour of this thesis. Finally, I would like to thank H. Dubach for
his kind support during my studies.

105

106 C.3. EXAMPLE QUERY

Bibliography

[1] Apache Software Foundation: Web Services - Axis, Version 1.1
(http://ws.apache.org/axis/).

[2] Apache Software Foundation: Jakarta - Tomcat, Version 5.0.x
(http://jakarta.apache.org/tomcat/).

[3] Brookshier, D. et al. JXTA: Java P2P Programming, SAMS, United Stats of America,
2002.

[4] Edmonds, J., Karp, R. Theoretical improvements in the algorithmic efficiency for network
flow problems, Journal of the ACM, 1972.

[5] Flenner, R. et al. Java P2P Unleashed, SAMS, United States of America, 2003.

[6] Heinzer, C. iServerP2P. Distributed iServer Architecture Based on Peer-to-Peer Con-
cepts, Inst. for Information Systems, ETH Zurich, 2004.

[7] JDOM Project (http://www.jdom.org).

[8] Sun Microsystems: Java Remote Method Invocation
(http://java.sun.com/products/jdk/rmi/).

[9] Project JXTA, Version 2.3.3 (http://www.jxta.org).

[10] JUNG - Java Universal Network/Graph Framework, Version 1.6.0
(http://jung.sourceforge.net).

[11] Sun Microsystems JXTA v2.3.x: Java Programmer’s Guide
(http://www.jxta.org/docs/JxtaProgGuide v2.3.pdf), 2005.

[12] Norrie, M.C. Lecture Notes for ISG course, Chapt. 2: Data Modelling, Inst. for Infor-
mation Systems, ETH Zurich, 2001.

[13] Norrie, M.C. et al. OMS Pro 2.0 Introductory Tutorial, Technical Report, OMS Pro
Version 2.0, ETH Zurich, 2003.

[14] Signer, B., Norrie, M.C. A Framework For Cross-Media Information Management, Pro-
ceedings of EuroIMSA 2005, International Conference on Internet and Multimedia Sys-
tems and Applications, Grindelwald, Switzerland, February 2005.

[15] Sun Microsystems: Sun Developer Network (http://forum.java.sun.com).

[16] Wilson, B. Inside JXTA. Programming P2P Using The JXTA Platform
(http://www.brendonwilson.com/projects/jxta/), New Riders Publishing, 2002.

107

	Title
	Contents
	1 Introduction
	1.1 iServer
	1.2 Distributed iServer
	1.3 Document Structure

	2 An Interaction Architecture for Distributed Information Systems
	2.1 Request Factory
	2.2 Handling
	2.3 Request and Response
	2.4 Messaging
	2.5 Protocol Schema Definitions
	2.6 Assembly of the Components and Evaluation of the Architecture
	2.6.1 Essentials of the Components
	2.6.2 Possible Adaptations

	3 Distributed iServer
	3.1 Request Factory
	3.2 Data
	3.3 Messaging
	3.4 Protocol Schema Definitions and Marshaling

	4 Implementation of an iServer Web Service
	4.1 Axis Web Service Framework
	4.2 Web Service Specific Components and Workflow
	4.3 Example Usage

	5 Implementation of a Peer Service for iServer
	5.1 JXTA Framework
	5.1.1 Advertisement
	5.1.2 Peer
	5.1.3 Peer Group
	5.1.4 Resolver Service and Resolver Query Handler
	5.1.5 Pipe

	5.2 User Management
	5.2.1 User Validity
	5.2.2 User Rating
	5.2.3 Propagation Retardation

	5.3 Response Rating
	5.3.1 RatingManager
	5.3.2 ResponseRater
	5.3.3 Aggregator

	5.4 Peer Service Specific Components and Workflow
	5.4.1 JXTA
	5.4.2 Handling
	5.4.3 iServer P2P
	5.4.4 Workflow

	5.5 Example Usage

	6 Conclusions
	6.1 Goals and Results
	6.2 Future Work

	A User's Manual
	A.1 iServer Web Service
	A.2 iServer Peer Service

	B Web Service Tutorial
	B.1 Translator Web Service
	B.1.1 Overview
	B.1.2 Demo
	B.1.3 Instructions to run it on your Machine

	B.2 Implementing the Translator Web Service with Apache Axis
	B.2.1 Step One: Implement a JavaŽ class
	B.2.2 Step Two: Generate a WSDL File
	B.2.3 Step Three: Generate Client and Server JavaŽ Classes
	B.2.4 Step Four: Fill in the Blanks
	B.2.5 Step Five: Write a Client
	B.2.6 Step Six: Setup Apache Tomcat 5.x
	B.2.7 Step Seven: Setup Apache Axis
	B.2.8 Step Eight: Deploy the Translator Web Service
	B.2.9 Step Nine: Give it a Test Drive!

	C Alternative Request Pattern
	C.1 Introductory Examples
	C.2 Generalised Query Model
	C.3 Example Query

