
Advanced XHTML Plug-in
for iServer

Semester work

Stefan Malaer
<stefan@malcom.ch>

Prof. Dr. Moira C. Norrie
Dr. Beat Signer

Global Information Systems Group
Institute of Information Systems

Department of Computer Science

12th October 2005

Copyright © 2005 Global Information Systems Group.

Abstract

The iServer architecture is an extensible cross-media information platform enabling links
between arbitrary typed objects. It provides some fundamental link concepts and is based
on a plug-in mechanism to support various media types. The goal of this semester work
was to develop a XHTML plug-in for iServer which enables links from XHTML documents
to other XHTML documents as well as parts of them. The resulting iServext is a Firefox
extension for iServer which provides visualization and authoring functionality for XHTML
links. Furthermore, we investigated research in the area of link augmentation and provide an
overview of recent technologies.

iii

iv

Contents

1 Introduction 1

2 Augmented Linking 3
2.1 Need for augmented linking . 3

2.1.1 Current link model . 3
2.1.2 Approaches for link augmentation 5

2.2 Related work . 6
2.2.1 Chimera . 6
2.2.2 Hyper-G/Hyperwave . 6
2.2.3 Distributed Link Service . 6
2.2.4 DHM/WWW and Extend Work . 6
2.2.5 HyperScout . 7
2.2.6 Link Visualization with DHTML . 7
2.2.7 Amaya project . 8

2.3 Link integration and authoring . 9
2.4 Link visualization . 11

2.4.1 Today’s link visualization . 11
2.4.2 Possible presentations of link information 11
2.4.3 Examples of link visualization . 12
2.4.4 Links on-demand . 16

2.5 Link augmentation with XLink . 18
2.5.1 XPath . 18
2.5.2 XPointer . 18
2.5.3 XLinks . 19
2.5.4 Examples . 19

3 iServer in the context of link augmentation 21
3.1 The iServer Model . 21

3.1.1 Links . 22
3.1.2 Resources and Selectors . 22
3.1.3 Layers . 23
3.1.4 User Management . 23
3.1.5 Plug-in mechanism . 23

3.2 Architectures for the XHTML plug-in . 25
3.2.1 Proxy server approach . 25
3.2.2 Browser plug-in . 25
3.2.3 Authoring tool integration . 26

v

vi CONTENTS

4 Architecture 29
4.1 Overview . 29
4.2 The iServext component . 30

4.2.1 Link integration and visualization 31
4.2.2 Link authoring . 32

5 Implementation 33
5.1 iServext GUI integration . 33

5.1.1 Overlay integration . 33
5.1.2 Preferences window . 34

5.2 XPointerLib . 36
5.3 SOAP - communication with the iServer Web Service 38

5.3.1 iServer Web Service methods . 38
5.3.2 iServext methods for communication 39

5.4 Integration of links . 41
5.4.1 Handling of the XPointers . 41
5.4.2 Visualization . 42
5.4.3 Layer Sidebar . 43

5.5 Authoring . 44
5.5.1 Authoring Sidebar . 45

6 Conclusions 47
6.1 Limitations . 48
6.2 Future Work . 49
6.3 Acknowledgements . 50

A Development environment 53
A.1 Set up environment . 53
A.2 Development . 56

B User manual 59
B.1 Installation . 59

B.1.1 Installing the iServer Webs Service 60
B.1.2 Installing the iServext . 64

B.2 Usage of the iServext . 66
B.2.1 Browsing . 66
B.2.2 Authoring of new links . 67

C Reference to future work 69
C.1 Remove limitations . 69
C.2 New features . 71

1
Introduction

Information becomes an increasingly valuable resource in today’s world. Not only informa-
tion storage but also information access and crosslinking are in the focus of interest. The
World Wide Web is the largest collection of information and therefore of particular interest.
Of course, information can also be stored in the form of other media types. Various libraries
and archives hold an enormous amount of information. The idea of linking information
together is much older than the Web and was for example applied in literature citations.
Through the Web the so called hyperlinking has become a central concept of an information
management.

The improvement of the current Web linking model was a topic of many research projects.
Most of them intended to improve the functionality of the current links with better informa-
tion about the link target, external link databases, easier authoring and others features. A
survey of the various project can be found in Section 2.2. In addition there was already a
project for implementing an XHTML plug-in for iServer based on a proxy approach [35].

All these projects, except the one mentioned at the end, only focus on linking within the Web.
Most of them address one specific topic of link augmentation. A more general approach
to link information is needed where not only resources on the Web can be linked but also
resources of other media types can be addressed. The existing XHTML plug-in for iServer
intends to do this but has some limitations due to the proxy approach.

The iServer architecture is an extensible cross-media information platform enabling links
between any kind of digital and even physical resources. The iServer architecture provides
fundamental link concepts such as resource addressing, layering and user management. New
media types can be added based on a plug-in mechanism. The main goal of this project is to
develop a plug-in for the iServer framework enabling link from and to XHTML documents
and parts of them.

1

2

We have implemented an XHTML plug-in architecture based on a Firefox extension and
the iServer Web Service [15]. Instead of inserting the link information into a document on
the server side, this is done within the Web browser which also does the visualization of
the links. The link information is stored in an external database and the authoring of new
links can be done independently of the accessibility of the document for alerting. In this
report we describe the theoretical background of link augmentation and the details of the
implementation.

The document is organized as follows. We discuss various topics of augmented linking and
related work in Chapter 2. The link visualization and the XLink standard are also addressed
in this chapter. The iServer model and its role in the context of link augmentation is pre-
sented in Chapter 3. The architecture and the implementation of the XHTML plug-in are
described in Chapter 4 and 5, respectively. In Chapter 6 we draw conclusions from our work,
outline current limitations and discuss possible future work. In Appendix A the development
environment for Firefox extensions is described whereas in Appendix B a user manual is
provided. Appendix C lists some references for potential future work.

2
Augmented Linking

In the following sections, we explain the need for augmented linking, present related projects,
link integration and authoring. Further, we address link visualization and XLink as a possible
approach.

Augmented linking includes all forms of enhancement to the current linking model of the
World Wide Web. This is one method for a general Web augmentation which is being inves-
tigated intensively.

2.1 Need for augmented linking
Although one of the biggest strengths of the Web is the simplicity of the link model, this is
also a significant shortcoming. With the ongoing evolution and maturing of the Web this
simplicity needs to be addressed.

In this section we will discuss the current link model with its strengths and limitations. Af-
terwards, we will give two possible approaches for link augmentation.

2.1.1 Current link model
The current link model supports HTML anchor tags <a> only, which offer a set of attributes
for defining link properties1. The most important one are the href attribute which identifies
the target URI and the target attribute which defines how the linked document will be
handled, e.g. opened in the current or a new window. There are many other attributes like
title, rev (reverse link) and rel (relationship to linked target), but they are rarely used. A
special form of a link are the <object> tag and the tag . They are used to include
the target source (e.g. an image or a flash film) directly in the document.

1Further information: http://www.w3.org/TR/html4/struct/links.html

3

4 2.1. NEED FOR AUGMENTED LINKING

Strengths
As mentioned earlier the main strength of the linking model is its simplicity . It is very
easy to understand and implement in existing documents. The same anchor tag is used for
navigational and contextual links. Although a separation may be advisable, it makes using
the model easier. It is also possible to specify links within a document or in another frame.
The linking to other types of media is supported too, but only to entire files.

Limitations
Future developments with more flexible ways of linking and different types of media are
restricted by the current model. Some of the limitations as described in [43, p.11] and [6,
p.39] are:

• Embedded links allow only the author and owner to define links

• Embedded anchors limit the ability to link from or to read-only material (e.g. CD-
ROMs, Films, PDFs)

• Embedded unidirectional links make backtracking extremely difficult

• The lack of overlapping anchors creates problems

• Links lack any form of inherent contextualization

• Single-source, single-destination links inhibit the representation of certain types of as-
sociations

• Untyped links inhibit intelligent browsing and navigation

• Embedded and untyped links restrict effective content management and flexible infor-
mation structuring schemes

• Only one set of links per document

A main problem is that links are embedded in the documents. The Web link is little more
than a goto or a jump instruction to the Web browser to retrieve or display a new document.
As links are unidirectional, there is no way to determine whether there are links pointing to
a given document. There is also no certainty whatsoever that the destination of a link is still
available, what can make browsing very annoying. The single-destination links and the lack
of multiple sets of links limit the possibility for a user to choose what kind of information
in terms of linking he likes to have displayed. Also the creation of temporary link sets for
destinations which are only temporary available is not possible. This does not mean that the
Web link model is insufficient in general, but for some purposes an augmentation of the link
model would be appropriate.

CHAPTER 2. AUGMENTED LINKING 5

2.1.2 Approaches for link augmentation
One approach are innovative solutions using existing technologies. Shortcomings like
single-source, single-destination links and non intelligent browsing can be eliminated. For
example to achieve a richer link model the scripting language JavaScript is used in [6, p.18].
With the help of a small script multi-source and multi-destination links can be supported.
The script provides a linking function, which can be called from different anchors and pass
the name of the link whenever they are activated. This means multi-source anchors can
trigger the same link destination. The function has also the possibility to open more than one
link at once and therefore provides multi-destination links. Additional JavaScript code can
be added to allow for example attributes which change the navigation behavior based on user
configuration or other characteristics.

Another important approach is to store links outside of the documents, in an external link
database. This approach relies on the use of new technologies and has to be implemented
additionally in existing architectures. There are numerous ways available for the storage
itself. Since the Web does not support easy integration of new features, an interface has to be
developed which enables the integration of external linkbases into it. Some examples of such
interfaces are discussed in the following section.

6 2.2. RELATED WORK

2.2 Related work
There have been many projects and studies dealing with Web augmentation, especially in the
area of editing, retrieval and visualization of links. In this section an overview of existing
work is given according to [5].

2.2.1 Chimera
This systems was used to carry out experiments with either displaying structure information
in a separate programm or making the structure server accessible through HTTP [1, 2]. A
Web server was modified to interpret an HTTP request as a request to a Chimera server to
which the Web server was hooked up and in turn translate the Chimera structures to HTML.
In this mode a user was able to browse the hypermedia structure using an ordinary browser.
At the other hand, a Java applet capable of displaying Chimera hypermedia structures was
created. By the combination of s special Web server, CGI-scripts and cookies, this applet
was inserted into all pages displayed in the Web browser, giving the user immediate access to
Chimera services.

2.2.2 Hyper-G/Hyperwave
This system relies on a custom document format (OHF) as well as Web servers and clients
(Harmony) [30]. The hypermedia system offers a strong support for hierarchical structures
and searching and allows users without a special browser to create links using forms. It
is also possible to interface to the system using an ordinary Web browser using a special
WWW-Gateway that translates OTF documents and hypermedia structure to HTML. The
latest versions is known as Hyperwave2 and offers a wide variety of services.

2.2.3 Distributed Link Service
This approach uses a wrapper to attach a simple client interface consisting of menus in the
browser’s toolbar for the creation of new links [9]. The systems is based on the Microcosm
hypermedia system [10, 8, 26]. Links are followed by selecting ’Follow Link’ in a contextual
menu. A link server was then requested and sent a Web page of the matching links. As an
improvement an interfaceless version was developed that used a link server proxy to modify
the pages on the fly by inserting links in Web pages as requested by the user. The user is
able to configure which link bases should be used. Due to performance issues and copyright
concerns about adding content to Web pages, a new design was introduced in the form of
AgentDLS [7]. Links are now displayed in a separate window and become more of a advisory
nature.

2.2.4 DHM/WWW and Extend Work
The University of Aarhus, Denmark, worked on various projects. They created DHM/WWW
which was enhanced by Navette and Webvise. Later, the Arakne Framework was developed
to provide a generalized Web augmentation tool.

2http://www.hyperwave.com

CHAPTER 2. AUGMENTED LINKING 7

DHM/WWW
The DHM/WWW was an attempt to enhance Web linking with an architecture consisting of
a Java applet communication through a CGI-script to a DHM Server [21]. When the user
requests a document in the applet, it retrieves the document while querying the DHM server
for endpoints in the document. The endpoints are downloaded and displayed in the browser
window based on JavaScript functionality.

Navette
DHM/WWW was enhanced by Navette which applied a signed Java applet, to use Web pages
from arbitrary Web servers [6]. Navette was embedded in a frame in the Web browser, as
the small DHM/WWW window tended to disappear under other windows. Link decoration
was handled through a proxy thread as the Netscape browser supported dynamic proxy con-
figuration changes through digitally signed JavaScript. Navette supports multiple users and
collections of links.

Webvise
The Webvise client [23, 22] was developed simultaneously with Navette. It is a custom
integration with Microsoft Internet Explorer. Webvise could insert links after the browser had
displayed the document, thereby improving the overall performance. This is done through
DOM and the COM interface available in the Internet Explorer. The COM interface is a
plug-in mechanism which gives full control of the browser but ist limited to this specific Web
client only.

Arakne Framework
As a follow-up project the Arakne Framework is an object-oriented, component-based model
aimed at providing Web augmentation tools a unified access to structure servers, proxies and
Web browsers [6, 5]. The system is split into three layers, which are a content layer, a service
layer for handling navigation, integration etc. and a structure layer for storage and retrieval
of structure. It can be seen as a framework generalizing Web augmentation tools integration.

2.2.5 HyperScout
This project investigates whether navigation can be supported by providing preview infor-
mation about the links and their targets to the user [41, 42]. The goal is to determine which
information should be provided to the user and how it can be displayed efficiently. The pre-
view information was about the title, description, response time, language, last update, last
visited, size of the document, type of the link and the action of the browser when the link is
clicked. Their conclusion was that some additional information can improve the usability of
links evidently, but too much information can confuse the user.

2.2.6 Link Visualization with DHTML
This project focuses on the topic of link visualization of extended links [34]. For visualization
DHTML was used, which can be displayed in a regular browser. As an example it uses

8 2.2. RELATED WORK

an XLinkbase, from which the links are generated. This technology does not only show
additional attributes, but also allows multi-destination links.

2.2.7 Amaya project
The application is jointly developed by W3C and the WAM (Web, Adaptation and Multi-
media) project at INRIA. Amaya is a Web editor, that is a tool used to create and update
documents directly on the Web. Browsing features are seamlessly integrated with the editing
and remote access features in a uniform environment. This follows the original vision of the
Web as a space for collaboration and not just a one-way publishing medium [27]. Amaya in-
cludes Annotea [38] a collaborative annotation application based on the Resource Description
Framework (RDF), XLink, and XPointer.

CHAPTER 2. AUGMENTED LINKING 9

2.3 Link integration and authoring
The augmented links have to be integrated and authoring capability has to be provided. If no
custom built systems are used, this is done through enhancement of existing systems. The
possible methods are discussed in this section.

The Web augmentation tools mentioned above are using various methods for integration. The
main differences are the point where the integration takes place and how it has been done.
There are three different places where the integration is usually done:

• Within the Web server by using a custom Web server, extensions or CGI-scripts on the
server. An extended Web server can translate a proprietary data format into HTML
(Chimera). With CGI-scripts requested pages can be modified when the are requested.

• Within a local or remote (DLS) proxy server. The pages can be modified transparently
to the user. But the performance is limited due to the time required by the proxy to
communicate with the link server and to process the documents.

• Within the browser by using a custom browser (Harmony, Amaya), a browser plug-in
(Webvise) or a Java-applet (Navette). The Web page can be modified before displaying
or after visualization through JavaScript and DOM. An advantage of this method is
having no loss of performance due to link integration, because the document can be
downloaded and displayed before it is modified.

A combination of these methods is also possible and can extend the functionality of the
integration substantially. As mentioned earlier, there are also different ways how the
integration can be done. The main difference is whether the Web page itself is modified or
another user interface is provided. This can be done by providing additional menus in the
browser, separate windows or frames.

The authoring also offers the possibility for variations. As a first element, user interfaces can
be provided in at least three different forms:

• A specific browser plug-in providing a link creation interface (DLS)

• An applet either integrated in each page (DHM) or in a separate browser

• A user interface integrated in the displayed document by using ordinary HTML forms
(Hyperwave)

Other options like custom authoring tools or XUL-like3 Web content management integration
would also be possible but have not been investigated so far.

A second element is the communication from the authoring tool to the link storage facility.
This can be done through HTTP requests with CGI-scripts (DHM/WWW), socket commu-
nication from an applet by using the applet signature mechanism (Navette) or by the use of a
Web client plug-in enabling unrestricted access to external resources.

3XML User Interface Language, further information: http://www.xulplanet.com

10 2.3. LINK INTEGRATION AND AUTHORING

A further question which has to be regarded in the context of Web augmentation tools is:
Should existing systems be enhanced or completely new systems be created? Both ap-
proaches have advantages but also some drawbacks. Therefore, no single answer can be
given.

CHAPTER 2. AUGMENTED LINKING 11

2.4 Link visualization
This section will discuss the topic of link visualization. First, we talk about existing meth-
ods. Afterwards possible forms of presentation are introduced and then examples of existing
implementations are given. Finally, we provide some notions about on-demand link visual-
ization.

2.4.1 Today’s link visualization
There exist defacto standards for link visualization in Web browsers. The most popular
browsers like Internet Explorer, Firefox or Opera visualize standard HTML links as under-
lined text in blue color. Links which have been visited by the browser before are shown in
purple color as shown in Figure 2.1. The color and presentation of the links can be altered by
applying Cascading Style Sheets (CSS) [39] or by altering the default browser settings.

Figure 2.1: Standard link visualization

Nielsen suggests to use the title attribute of the <a href> tag as an enhancement to display
additional information about the link [32]. Nowadays, this attribute is supported by almost
any browsers. It can easily be added and is visualized in small window below the link after a
second when the mouse cursor is moved over the link. A code sample of a link with a title
attribute is shown below and Figure 2.2 shows how it looks when it is displayed.

<a href="http://news.bbc.co.uk/" target=" blank"
title="Link news website [opens in a new window]">

Figure 2.2: Visualization of the title attribute

2.4.2 Possible presentations of link information
For real link augmentation other possibilities of link information visualization have to be ex-
ploited. Problems like multi-destination links, overlapping link markers and bi-directional
links have to be addressed. This additional information about links can be displayed in dif-
ferent forms [42]. At least five different forms can be distinguished:

12 2.4. LINK VISUALIZATION

• Link design: Different kinds of accentuations for links are a self-evident method to
differentiate links. Besides the two standard colors blue and purple, different color
densities, background-colors, translucent overlays or font-styles can be used. An ad-
vantage is that the coding of link properties are eye-catching. Disadvantages are the
reduced readability and restricted information variety the of such methods.

• At the link: Additional information can be presented in a short bracketed text or an
icon. This method can easily be implemented with today’s technology, but can also
reduce readability and is not applicable to many layouts and linked graphics.

• Mouse cursor: The type of the mouse cursor is another possibility to present the user
information about the system status or the action which can be activated by the mouse.
Many of today’s browsers display a hand symbol when the mouse cursor is moved over
a link (see Figure 2.2). The information next to the focus of the user is an advantage.
But it is only shown after the mouse is moved over the link and the possibilities are
rather abstract.

• Popup window: Small popup windows are often used as so called tooltips, they pro-
vide for specific user-interface-elements a short additional textual help. They appear if
the mouse is kept still for a moment over an element or if an element is clicked. Web
browsers also offer right click popup menus where information and options could be
implemented. Like the mouse cursor they have the advantage to appear next to the
user’s focus, but a problem can be that they can hide other elements of the Web site
when they are displayed.

• Other places: A Web browser offers also other possible places for displaying addi-
tional information. The status bar of most browsers can be used and many browsers
also offer a side bar. Supplementary content can also be shown in frames, tabs or new
windows. This offers a big variety of alternatives, but has the disadvantage that the
information is presented off focus.

There are almost no boundaries how additional link information can be displayed. The restric-
tions mainly come from limited enhancement capabilities of existing tools. Many variants
have be implemented and experienced with. In the next section some examples are presented.

2.4.3 Examples of link visualization
A number of researchers in the area of Web augmentation had ideas about link visualization.
Some of them were implemented and others remained just ideas. A selection of the presented
concepts are also discussed in [40].

Third voice
An example how additional link markers can be presented and options how to follow them
can be presented was given by Third Voice4. From an external linkbase additional links were
loaded. They were underlined by a thin orange line and could offer a choice of targets in
popup windows as shown in Figure 2.3.

4The Third Voice project stopped in 2001

CHAPTER 2. AUGMENTED LINKING 13

Figure 2.3: Additional links in Third voice

Guide system
The use of different mouse cursors was implemented by the Guide system. The mouse cursor
made link characteristics apparent and changed according to the link type if it hovered over a
link (see Figure 2.4).

Figure 2.4: Different mouse cursors in the Guide system

Harmony
Harmony, Hyper-G’s browser, used overlapping colored background boxes to mark the be-
ginning and end of up to six overlapping markers. For an example with two overlapping links
see Figure 2.5. Even these two overlapping boxes decrease the readability of the text and this
method will finally fail if a larger number of anchors intersect. The boxes will shrink to pixel
height, creating a very distracting background without giving the user applicable information.

Figure 2.5: Link overlapping in Harmony

14 2.4. LINK VISUALIZATION

XLink anchors
A possible solution for a high link density is provided by this example of a mock-up of
outgoing hypertext links (see Figure 2.6). Therefore a link on-demand technique is used.
The different link database may be selected in an additional window or as is done here in
the side bar of the browser. By selection or deselection, link databases could be enabled and
disabled, allowing the user to view only the links he wants. Colors may be used to associate
listed link databases to the anchors on the screen.

Another interesting idea was introduced in this mock-up. When link anchors are longer than
a few words, a narrow bar on the right side of the anchored paragraph is used for the marking
instead of highlighted text. Good readability can be maintained. The use of the scrollbar is
suggested to locate link anchors outside of the current visible section on long Web pages.

Figure 2.6: Mock-up: Outgoing XLink anchors

HyperScout
In the HyperScout system additional link information is displayed in a pop-up menu that
renders XLink-specific and other automatically gathered information (see Figure 2.7). Infor-
mation can be provided on link target type (”mailto:”, links, downloads), availability (broken
links), size and connection speed. Further, attributes of a more semantic nature like title, au-
thor and language of the target document or structural hints like indicating out-of-site links
could be used to automatically enhance link preview.

Fluid links
Another approach are fluid links introduced in [44]. They are called fluid because the docu-
ment adjusts dynamically and makes space for a gloss, which means additional information
to a link. This information appears between the lines of text or at the border of the page (see
Figure 2.8). An advantage is that the original document is not covered by a pop-up window,
but the needed animation is distracting and time-consuming.

CHAPTER 2. AUGMENTED LINKING 15

Figure 2.7: HyperScout

Figure 2.8: Fluid links

Visual preview
Another method of presenting additional information about the link target is Visual pre-
view [29]. When the mouse cursor is moved over a link anchor either a thumbnail of the
link target or a symbol about the link type is displayed next to it (see Figure 2.9). This
information can be gathered automatically and does not require any authoring.

Figure 2.9: Visual preview

Incoming links
In this example no outgoing link markers are addressed but incoming link targets. A possible
way of showing them by displaying a lateral maker on the left side. By using the left side they
are not mixed with outgoing link markers which can be displayed only on the right side. For
a more precise link target visualization, moving the mouse cursor over the maker will shade
the rest of the document except for the target area as shown in Figure 2.10.

16 2.4. LINK VISUALIZATION

Figure 2.10: Mock-up: Showing incoming link target

iCab toolbar
Structural links are supported by iCab. They can be browsed with a structural link navigation
toolbar (see Figure 2.11). Despite structural information can be provided easily, only very
few Web sites offer it.

Figure 2.11: iCab’s toolbar

We discussed many different methods of link visualization. All of them have advantages but
also short-comings. No single best solution can be found and depending on the context best
solution possible has to be applied. The idea of links on-demand is further considered in the
next section.

2.4.4 Links on-demand
Usually link marker visualization is shown permanently. Another option would be that they
are only shown on-demand. For example you have to press a key or click a button to see the
links. When you read the text you do not have disturbing link markers, but if you want to
browse a text, they can be activated easily.

In [33] two studies are described concerning link marker visualization. The first study
compared the standard blue underlined links with translucent overlays. The conclusion is
that without underlined links the readability is improved. But still half of the participants
prefer to have the used layout with blue, underlined links. The second study, which is of
bigger interest here, is about the implications of links on-demand.

Two types of tasks were given to the participants. A text task where they had to answer a
question concerning the content of a Web page and a link task where they had to follow a link

CHAPTER 2. AUGMENTED LINKING 17

to find the correct answer. The text task was significantly better solved with links on-demand,
whereas the link task was better solved with links which were always displayed. There is a
trade-off between readability of text and fast interaction with links. The user judgment is also
undecided, 60% preferred links on demand and 40% rather have them always displayed.

18 2.5. LINK AUGMENTATION WITH XLINK

2.5 Link augmentation with XLink
The topic of XLinks is addressed in this section. XLinks are a development of the W3C [17]
and present one occurrence of link augmentation. In the following the concepts of XPath,
XPointer and XLinks in general are discussed. Then we show some examples where this
concepts have been used.

2.5.1 XPath
As it is a common task to address parts of an XML document, the W3C developed the
XML Path Language (XPath) [14]. With this standard not every application has to define
its own method for this task. XPath is now used in XSLT [28], XPointer (described in the
next section) and XQuery [4]. Relating to the development of XQuery the second version of
XPath is under development [3].

XPath can address any part of an XML document tree. This is done with a location path
which describes step by step a specific node-set. It also provides a set of expressions and
functions. They enable XPath to evaluate complex requests for a document part. Here is an
example for a location path:

/descandant::book[attribute::title="XPath"]/child::chap
[position()=1]/child::sect[position()=2] ->

//book[@title="XPath"]/chap[1]/sect[2]

This example describes the path to the second section in the first chapter of any book with
the an attribute title of value XPath. The second version is abbreviated notation to make the
location path more human readable.

2.5.2 XPointer
Another interesting standard related to linking is XPointer [18, 19, 24, 25], which provides
a general way to select fragments of an XML document. It was developed with regard to
XLink, which is discussed in the next section.

XPointer cannot only access sets of elements, but also specific parts of a document. There-
fore, the concepts of points and ranges are defined. A Point is defined by a node called the
container node and a non-negative integer, called the index. It can represent the location
preceding any individual character or preceding or following any node in the information set
constructed by an XML document. A range is defined by two points, a startpoint and an
endpoint. The range represents all of the XML structure and content between the startpoint
and the endpoint. Examples are shown in Figure 2.12. XPointer extends the XPath functions
set with functions dealing with ranges.
XPointers are not only very flexible, but also pretty robust. Changes in a document often do
not change an XPointer describing a specific unchanged part of a document. With the use
of IDs they can even be made more robust. The problem with IDs is that the author has to
provide them. Therefore an XPointer cannot use IDs if the creator is not the owner of the
document or they have not already been defined.

CHAPTER 2. AUGMENTED LINKING 19

Figure 2.12: Points and Ranges (according to [35, p.14])

2.5.3 XLinks
The XML Linking Language (XLink) [17] defines how hyperlinks can be used in XML-based
environments. XLink uses XPointer as resource identifier. The links can either be embedded
or stored in an external linkbase.

XLink supports two types of links: simple and extended links. The simple links are modelled
similar to HTML’s link model and are supported by some browsers like the Mozilla browser
family. They do not offer new options for augmented linking since they are always inline
and only provide unidirectional links. The extended links are far more powerful and offer
possibilities for a more elaborate link model.

<extendedlink xlink:type="extended">
<loc xlink:type="locator" xlink:href="a.xml" xlink:label="x"/>
<loc xlink:type="locator" xlink:href="b.xml" xlink:label="y"/>
<loc xlink:type="locator" xlink:href="c.xml" xlink:label="z"/>
<loc xlink:type="locator" xlink:href="d.xml" xlink:label="z"/>

<go xlink:type="arc" xlink:from="x" xlink:to="y"/>
<go xlink:type="arc" xlink:from="y" xlink:to="z"/>

</extendedlink>

Extended links mainly consist of resources, locators and arcs. The resources and locators
define a starting point or a target, whereas the resources are inline and the locator can be
external. The arcs provide the connection between them. They allow to define traversal rules
and behavior. An example from [16, p.6] of an extended XLink is given above. The XLink
standard supports n-ary links, are typed and provide a divers useful attributes. Separating the
links form the content is also possible with them [20]. They could serve as augmented links
for a web with XHTML pages, but they are not yet supported in any major browser. The
W3C does not provide any guidelines for visualization either. Maybe in the future XLink
will become a standard for hyperlinks, but nowadays this is definitely not the case due to the
lack of application implementing the standard.

2.5.4 Examples
Some of the above discussed technologies have been used for various implementations of
link systems and other XML applications. In this section we show some examples of these

20 2.5. LINK AUGMENTATION WITH XLINK

implementations.

Xspect
Xspect is an implementation of XLink [11, 12]. It handles transformation between an open
hypermedia format (OHIF) and XLink. The Xspect system5, which is based on XSLT and
JavaScript provides users with an interface to browse and merge linkbases. It supports navi-
gational hypermedia in the form of links inserted on the fly into Web pages as well as guided
tours presented as SVG (Scalable Vector Graphics). Xspect has two implementations: one
server-side and one running on the client. Both implementations provide the user with an
interface for the creation of annotations.

XLinkProxy
The XLinkProxy is a Web application which allows sophisticated hyperlinks to be defined
outside referring documents [13, 37]. It uses XLink and XPointer for link definition. The
goal is to give users the chance to build dynamic multi-destination, multi-directional link
databases. XLinkProxy offers a user interface to create and visualize links for both HTML
and XML documents accessed through an HTTP proxy, whereby the HTML has to be con-
verted into an XML Syntax. The XPointer library used for this task is designed to run on a
Web server and is written in JavaScript.

XSLT Extension
The XSLT++ engine is an enhanced version of XSLT [37]. Whereas XSLT uses XPath, this
solution supports XPointer instead of XPath for pattern selection. With XSLT++ it is possible
to apply transformation to portions of text and not only to elements, attributes or text nodes.
The current implementation of XSLT++ is written in Java and is based on Xalan6, the XSLT
engine by the Apache group.

XConnector
Another example is XConnector [31]. This is a language for the creation of complex hy-
permedia relations with causal or constraint semantics. XConnector, like iServer, allows the
definition of relations independently of which resources are related. Another feature is the
specification of relation libraries, providing reuse in relationship definition. The main goal is
to improve linking languages or the linking modules of hypermedia authoring languages in
order to provide multimedia synchronization capabilities using links.

5http://fahbentor.daimi.au.dk
6http://xml.apache.org/xalan-j/

3
iServer in the context of link

augmentation

In this chapter we discuss how iServer can be used for link augmentation. Therefore, the
iServer model and also three possible approaches for the implementation of an XHTML
plug-in are discussed.

The iServer is an integration server architecture developed by the Global Information Systems
group1 at ETH Zurich. The iServer enables cross-media linking based on an object-oriented
hypermedia model. This mixed-media platform can easily be extended to support new types
of digital or physical multimedia resources. To use a new resource type within the platform,
a plug-in has to be provided. With the use of an XHTML plug-in, iServer presents a very
flexible and extensible tool for link augmentation which also offers the possibility to extend
the Web to a real open hypermedia system.

3.1 The iServer Model
This section presents the main features and concepts of the iServer model [36]. These are
links, resources and selectors, layers, user management and finally the plug-in mechanism.

The model is based on the semantic, object-oriented data model OM. The shaded rectangular
shapes denote collections of objects where the name of the collection is given in the unshaded
part. The shaded oval shapes represent associations between entities of two collections which
can be restricted by cardinality constraints.

1http://www.globis.ethz.ch/research/iserver/

21

22 3.1. THE ISERVER MODEL

3.1.1 Links
Links within the iServer architecture are always directed and are bound to one or more
sources und lead to one or more targets (Figure 3.1). An information entity can be used
equally as a link source or a link target. This is taken into account in the information model
by introducing a generic entity concept.

The cardinality constraints 1:* specified at the source and target points of the associations
indicate that each link must have at least one and possibly many sources and targets. With
this the support of multi-headed links and multiple sources is achieved. The 0:* at the target
point of both associations specifies that there is no limit on the number of links for which an
entity may be the source or target.

The representation of Links as a subcollection of Entities also allow to define links
between links. Additionally, each entity can be associated with a set of properties as specified
by the Properties collection. These properties are represented by key and value pairs.
While they are not predefined by the iServer framework, they can be defined individually. For
example to customize the behavior for specific application domains similar to the behavior
attributes of XLink.

An other important fact is that the underlying OM model provides bidirectional associations
as a higher level construct, all the associations used within the iServer framework are also
bidirectional. This allows to get corresponding link sources for a given target object.

Figure 3.1: iServer links

3.1.2 Resources and Selectors
The simplest type of entity is the resource type, which represents an entire information unit.
Since authors want a better control of the link granularity, there is also the possibility to
address specific parts of a document. A selector is an other subtype of entity which
allows to address parts of the related resource.

CHAPTER 3. ISERVER IN THE CONTEXT OF LINK AUGMENTATION 23

Each media type can define specific media resource and selector subtypes. Resources can
be any kind of multimedia documents like videos, pictures, sounds, web documents, but are
not limited to these. Physical objects like paper documents are supported too. The selector
depends on the resource type. It can address a paragraph in a text document, a shape in a
picture, a time-span in a video or something else.

3.1.3 Layers
The iServer framework uses layers to provide the possibility of overlapping selectors and
become more flexible in defining the semantics of link anchors. Each selector is as-
sociated with exactly one layer and no overlapping within a layer is allowed (Figure 3.2).
Layers are explicitly ordered and therefore priorities can be assigned. In the case of over-
lapping selectors the uppermost selector will be selected. The layers may be acti-
vated and deactivated which allows to generate a content-specific set of links.

Figure 3.2: iServer layers

3.1.4 User Management
The iServer framework provides user management as one of the fundamental components
(Figure 3.3). A user can either be an individual or a group. Each entity is created
by exactly one individual owner. He has full control over an entity’s content and can define
access rights for other groups of users or individuals. With the help of the two
associations AccessibleTo and InaccessibleTo the rights can be defined in a flexible
way. In addition, users can store any number of preference parameters.

3.1.5 Plug-in mechanism
A new media type can only be used within iServer once a corresponding plug-in is imple-
mented. This extension consists of types for both the media resource and the media
selector and some functionality for manipulating them. Preferably, an access API is
provided to simplify the interaction with the new type.

The plug-in has to provide two classes to extend the iServer framework to support the new
media type:

• a specified resource class extending the iServers Resource class describing object
properties and operations

24 3.1. THE ISERVER MODEL

Figure 3.3: iServer user management

• a specified selector class extending the iServers Selector class and specifying how
to address specific parts of the new media type

CHAPTER 3. ISERVER IN THE CONTEXT OF LINK AUGMENTATION 25

3.2 Architectures for the XHTML plug-in
After presenting the iServer model this section focuses on the possible approaches for the
XHTML plug-in. Three different approaches can be distinguished: The proxy server ap-
proach, the use of browser plug-ins and the authoring tool integration. Despite the major
differences between them, a combination of different approaches remains an option which
could remove some of the limitations. We discuss the features and possible tools as well as
advantages and disadvantages of each approach.

3.2.1 Proxy server approach
In this approach a proxy server is used to interact with the existing Web architecture. Instead
of working directly with a Web Client or a Web Server, the proxy server is installed between
the Web client and the WWW. For example Jigsaw2 a Java based proxy server is an option.

The proxy is connected with iServer to retrieve linking information and if needed add new
links. It can filter HTTP requests and modify the responses of the Web servers. Additional
code and for example JavaScript functions can be implemented in a Web page. This can be
used for visualizing iServer links and offering authoring functionality in the browser. For
authoring also the use of signed Java applets which communicate directly with the iServer
provide a feasible solution. This approach was chosen in a previous project to build an
XHTML plug-in for iServer described in [35].

Advantages of this approach are as follows:

• Web client independence (proxy support is required)

• platform independence (with a Java based proxy)

• already existing work on an XHTML plug-in

And the disadvantages are:

• limited functionality of link visualization and authoring in a Web browser

• no direct support for linking with other media types

• delay of page display due to the modification in the proxy

3.2.2 Browser plug-in
A browser plug-in could enable a standard Web browser to be able to display and manipulate
iServer links. The plug-in can communicate directly with a local or remote iServer instance.
The visualization of the links can be done by the browser itself allowing to do it after a page
has loaded.

The plug-in can be written for Mozilla Firefox, Microsoft Internet Explorer or any other
browser allow plug-in support. Both browser Mozilla Firefox and Microsoft Internet

2http://www.w3.org/Jigsaw/

26 3.2. ARCHITECTURES FOR THE XHTML PLUG-IN

Explorer offer sufficient support for plug-ins.

Firefox has the advantages of being open source, cross-platform, offering many examples of
existing plug-ins and extensions, support for XPCOM and a big active developer community.
Shortcomings are the still limited market share and fast changing versions.

Internet Explorer has its strengths in the huge market share, a very good support of COM
and Active-X components. Disadvantages are that it is relatively old (October 2001), that a
completely new release is planned (end 2005) and the platform dependency.

Advantages of the browser plug-in approach are as follows:

• a standard Web client can be used for browsing

• many forms of link visualization can be exploited

• seamless integration in existing Web architecture

And the disadvantages are:

• plug-in is restricted to one specific Web client

• no direct support for linking with other media types, an integration with the authoring
tool remains a possibility

3.2.3 Authoring tool integration
An authoring tool for the iServer framework, allowing to create links between different
media types, is under development. Like iServer, it allows plug-ins for different media types.
Such a plug-in for visualization and authoring of iServer links in XHTML is possibility for
the implementation.

For the integration a Java browser is needed to display the content of the XHTML Web
pages. Proprietary Java browsers like ICEbrowser3 or Clue Web Browser4 do not seem to be
a satisfying solution. Possible open Java browsers which could be integrated are:

• Jazilla5 is a clone of the Mozilla browser completely written in Java

• HotJava6, the sun browser is unfortunately not further developed and supported any
more

• JRex7 is a Java browser component with a set of API’s for embedding Mozilla browser
within a Java application

Advantages of this approach are as follows:
3http://www.icesoft.com
4http://www.netcluesoft.com
5http://jazilla.mcbridematt.dhs.org
6http://java.sun.com/products/archive/hotjava/index.html
7http://jrex.mozdev.org

CHAPTER 3. ISERVER IN THE CONTEXT OF LINK AUGMENTATION 27

• direct support for links with other media types

• layer and user management already implemented and could be used

• easy interaction with iServer

And the disadvantages are:

• a non-standard browser has to be used within the authoring tool

• browsing of iServer links is only possible with the authoring tool

28 3.2. ARCHITECTURES FOR THE XHTML PLUG-IN

4
Architecture

In this chapter we describe the overall architecture choosen for the iServer XHTML plug-in.
Therefore an overview of the used components is given. The iServext component for link
visualization and authoring is then described in more detail.

From the possible architectures we choose the browser plug-in approach as described in Sec-
tion 3.2.2. It offers the most possibilities in the area of link visualization and it can be in-
tegrated in existing Web technologies. The browser of choice was Mozilla Firefox mainly
because of the open architecture und the easy integration of extensions.

4.1 Overview
This section gives an overview of the architecture. The system is composed of the following
parts:

• iServext, the iServer extension for Mozilla Firefox

• iServer, enhanced by the XHTML plug-in, used by the iServer Web Service to access
the link database

• iServer Web Service, used by the iServext to access the link database and create new
links

The iServext component is discussed in the next section. It communicates with the iServer
Web Service and the authoring tool. The iServer Web Service component provides the possi-
bility to access a link database through a Web Service. Its implementation and architecture is
described in [15]. The iServer component was described earlier in Section 3.1. A visualiza-
tion of the relations is shown in Figure 4.1.

29

30 4.2. THE ISERVEXT COMPONENT

Figure 4.1: Architecture overview

4.2 The iServext component
In this section we describe the iServext component. It has two main tasks:

• The integration and visualization of link information from the iServer Web Service into
a corresponding document

• The authoring of new links between XHTML documents respectively XHTML Selec-
tors

Both tasks are independent, but communicate with the same external components. They are
also integrated into one component, which helps to reduce the number of different compo-
nents.

CHAPTER 4. ARCHITECTURE 31

4.2.1 Link integration and visualization
The different components needed for the link integration and the flow of information between
them are shown in Figure 4.2.

The iServer links have to be inserted into a corresponding document when it is loaded in
the browser (1©, 2©). Therefore, the iServext sends a SOAP request 3© to the iServer Web
Service requesting all existing links for the concerning current document.

The iServer Web Service either can be local or remote. After receiving the SOAP request
it fetches the link information with the help of the iServer library from the link database
(4©, 5©), which provides all the information (6©, 7©) required for the SOAP response to the
iServext.

The SOAP response 8© contains all the necessary information about the Links and
Selectors. Thus the iServext can add the links in the form of layers directly into the DOM
Tree of the document 9©. They are displayed by the rendering engine without reloading the
document.

Figure 4.2: Architecture of link integration and visualization

32 4.2. THE ISERVEXT COMPONENT

4.2.2 Link authoring
The components used for the authoring of links are shown in Figure 4.3. The flow of
information is indicated as well.

For the authoring of XHTML iServer links a Ressource and a Selector is needed. The
iServext provides the functionality for retrieving the URL as Ressource-identifier and an
XPointer as Selector from any given selection. In the authoring sidebar one can define a
link with a source and a target 1©. You can name the Ressource and the Selector as
well as the Link.

The link information is submitted to the iServer Web Service through a SOAP request 2©. The
iServer Web Service creates a new link in the link database with help of the iServer library
(3©, 4©). If the creation of the link was successful this information is sent to the iServer Web
Service(5©, 6©) and converted into a SOAP response which is sent to the iServext 7©.

Figure 4.3: Architecture of link authoring

5
Implementation

In this chapter we present various aspects of the iServext implementation. In the following
sections the GUI integration of the iServext, the XPointerLib, SOAP1 which was used for
the communication with iServer Web Service, and the details of the integration of existing
links are described. We also discuss the implementation of the authoring functionality with
the authoring sidebar and the corresponding iServer Web Service methods used for it in the
last section of this chapter.

As a Mozilla Firefox extension, the iServext is based on JavaScript and XUL2. The use of
XPCOM3 Services is possible too, as it is done here with the XPointerLib. In the next section
we discuss how the integration into the GUI of Firefox was realized.

5.1 iServext GUI integration
How to integrate the iServext into the Firefox GUI is discussed in this section. First we
describe the integration of the control items into the overlay of the Firefox application. In the
second subsection the implementation of the preferences window is discussed.

5.1.1 Overlay integration
For the overlay integration basically a XUL file called overlay.xul is loaded into the
chrome environment to make the control elements visible in the Firefox. Chrome is the
user interface part of the application window that are outside of a window’s content area.
Toolbars, menu bars, progress bars, and window title bars are all examples of elements that
are typically part of the chrome.

1Simple Object Access Protocol, further information: http://www.w3.org/TR/soap/
2XML User Interface Language, further information: http://www.xulplanet.com
3Cross Platform Component Object Model, further information: http://www.mozilla.org/catalog/architecture/xpcom/

33

34 5.1. ISERVEXT GUI INTEGRATION

For the iServext menu items are inserted into the context menu, the sidebar menu and the
tools menu. The integration of the saveDB method into the tools menu is shown below as an
example. The outer tag defines which menu should be used and the inner tag what should be
inserted.

<menupopup id="menu_ToolsPopup">
<menuitem id="iservext_toolmenu"
insertbefore="devToolsSeparator" label="&iservext; &savedb;"
accesskey="&savedbkey;" oncommand="saveDB();" />

</menupopup>

Another possibility of integration is used for the method to switch the iServext on and off.
An icon can be added to the toolbar palette. The code used for this is shown here:

<toolbarpalette id="BrowserToolbarPalette">
<toolbarbutton id="iservext_toolbar" class="toolbarbutton-1"
label="&iservext;" oncommand="onOff();"
tooltiptext="&onofftooltip;"/>

</toolbarpalette>

The picture of the icon is defined in a CSS file called iservext.css which is stored in
chrome://iservext/skin/. All the methods used in the overlay.xul are defined
in the JavaScript file overlay.js which is included into the overlay.xul together with
all the other JavaScript files used in the extension. The entities used in the XUL are defined in
the iservext.dtdwhich has to be included as well and the properties for the strings in the
JavaScript files are in iservext.properties (see also Appendix A.2 for file locations).

5.1.2 Preferences window
The preference window is used to set the various options of the iServext. The URL of the
preference window can be defined in the install.rdf by adding the following line:

<em:optionsURL>
chrome://iservext/content/prefs.xul

</em:optionsURL>

In the prefs.xul all the information about the visualization and the handling of the
preferences is contained. With the use of the <prefwindow> tag the XUL allows the
manipulation of preferences with a very simple syntax.

A preference value is called by a tag <preference>. An example for the integer opacity
is shown here:

<preference id="opacity" name="extensions.iservext.opacity"
type="int"/>

The preference then can be displayed in a simple textbox and if the value is changed and
submitted the preference is changed. The sample code for the preference opacity from above
is the following:

CHAPTER 5. IMPLEMENTATION 35

<label value="&background;"/>
<textbox id="text_opacity" preference="opacity" width="30"/>
<label value="%"/>

The preference attribute contains the id of the <preference> tag. Boolean values can be
displayed as radio buttons and for colors a ¡colorpicker¿ tag is available.

The default values of the preferences are defined in the JavaScript file preferences.js
by using the syntax shown below. Three types of preference values are distinguished: integer,
boolean and strings.

pref("extensions.iservext.opacity", 30);
pref("extensions.iservext.createlinklayer", false);
pref("extensions.iservext.bgcolorlink", "#999999");

36 5.2. XPOINTERLIB

5.2 XPointerLib
As an other implementation issue we discuss the XPointerLib4 in this section. The XPoint-
erLib is an XPCOM Service which implements XPointer for the Mozilla browser family. It
was originally motivated by the Annozilla Project5 and then was developed as a standalone
project. Since 2003 there are no new releases. Most likely because Mozilla provides
native support for some XPointer functionality6. For our purpose the native support is not
sophisticated enough yet because points and ranges are not supported.

The XPointerLib Service can be called in JavaScript as follows:

var xptrService = Components.
classes["@mozilla.org/xpointer-service;1"].getService();

xptrService = xptrService.
QueryInterface(Components.interfaces.nsIXPointerService);

The xptrService implements several methods from which the following are used in the
iServext:

• createXPointerFromSelection creates an Xpointer from a given selection.

• parseXPointerToRange parses an XPointer for a given document into a Mozilla
range object.

• markElement marks an element to be ignored by the XPointer parser. In this way
they do not interfere with other XPointers of this document.

Examples of the the JavaScript code for these methods are given below:

var xptrString = xptrService.createXPointerFromSelection(
selector(),focus_selector().document);

var range = xptrService.parseXPointerToRange(xptrString,
focus_selector().document);

xptrService.markElement(insertedNode);

The selector() method returns the current selection and the focus selector()
returns the currently focused window. The createXPointerFromSelection method
is used for the creation of link Selectors and the parseXPointerToRange method
is needed for the integration of the links into a corresponding document. For all the nodes
inserted into DOM tree the markElement method is used.

4http://xpointerlib.mozdev.org/
5http://annozilla.mozdev.org/
6http://www.mozilla.org/newlayout/xml/

CHAPTER 5. IMPLEMENTATION 37

The XPointer which is created can be in the forms presented below. It consists of just a
string-range or a start-point and a end-point. The second case is used if the XPointer includes
more than one node. Both the start and end-point contain a string-range with the following
arguments: An XPath expression, an empty argument, the text start index and the text offset.

xpointer(string-range(/html[1]/body[1]/p[1], "", 3, 5))

xpointer(start-point(
string-range(/html[1]/body[1]/p[1], "", 6,1))
/range-to(end-point(
string-range(/html[1]/body[1]/p[1]/strong[1],"", 3, 1))))

38 5.3. SOAP - COMMUNICATION WITH THE ISERVER WEB SERVICE

5.3 SOAP - communication with the iServer Web Service
In this section the communication with the iServer Web Service is discussed. First we
describe the methods offered by the Web Service and then the methods used by the iServext
for communication with the Web Service.

In Figure 5.1 we give an overview of the methods called when a new document is loaded.
The main methods in this overview are described in this and the next section of this chapter.

Figure 5.1: Overview of methods called on pageload

5.3.1 iServer Web Service methods
The iServer Web Service offers a set of basic iServer methods implementations and was
extended with new methods to serve the XTHML Plug-in. The iServext uses the following
four methods:

• The getOutgoingLinks(String documentUri)method returns all outgoing
links for a give XHTML document. The links can either link directly from the docu-
ment or from a selector that has been defined for the document. It is called when a new
page is loaded.

• The getIncomingLinks(String documentUri) method returns all incom-
ing links for the XHTML document. The links can either link directly to the document
or to a selector that has been defined for the document. It is called when a new page is
loaded and the preferences are set to display the incoming links.

CHAPTER 5. IMPLEMENTATION 39

• The createXHTMLLink(Strings: linkName,
sourceDocumentName, sourceDocumentUri,
sourceSelectorName, sourceSelectorXpointer,
sourceSelectorLayer, targetDocumentName,
targetDocumentUri, targetSelectorName,
targetSelectorXpointer, targetSelectorLayer, creatorName)
method creates a new XHTML link based on source and target information. It is called
by the iServext Authoring Sidebar.

• The saveDB() method commits the current state of the link database.

All the methods of the iServer Web Service are called through a SOAP request and give back
a SOAP response. How the iServext handles SOAP is described in the next subsection.

5.3.2 iServext methods for communication
As mentioned earlier SOAP requests are used by the iServext for the communication with
iServer Web Service. Firefox offers built-in JavaScript methods for SOAP communications
which are described in this subsection together with the methods the iServext uses to get the
link information.

When a new page is loaded a listener calls the newPageLoad() method. This method calls
methods to add the JavaScript for the jsDOMenu and the CSS for the layers. Furthermore,
it executes the getOutgoingLinks() method and if the preference are set for it the
addLinkLayer() and the addIncomingLayer() method.

The addLinkLayer() methods adds a layer over the existing links that they can still
be accessed when a new link lays on the of them. The getOutgoingLinks() and the
addIncomingLayer() method work alike and the only difference is that the first one
gets the outgoing links and the second one the incoming links. So we will only describe how
the getOutgoingLinks() method works.

The getOutgoingLinks() method gets the URI of the loaded document and sets it as
parameter for a SOAP call. The code used for this is shown here:

var params = new Array();
params[0] = new SOAPParameter(documentUri,"documentUri");

var inText = ’getOutgoingLinks’;
soapcall(inText,params,parseLinkCall,’outgoing’,aDoc);

The soapcall() method shown below creates a SOAP. It uses the built-in method
SOAPCall() and adds the appropriate attributes to it. Then the call is invoked by a function
which calls a SOAP response handler method and the callback method which is in this case
the parseLinkCall() method.

function soapcall(aMethod,aParams,aCallback,aTyp,aDoc){
var soapCall = new SOAPCall();

40 5.3. SOAP - COMMUNICATION WITH THE ISERVER WEB SERVICE

var serverURI = getPrefBranch().getCharPref(’servername’);
soapCall.transportURI = serverURI;
var serviceName = getPrefBranch().getCharPref(’servicename’);
soapCall.encode(0, aMethod, serviceName, 0, null,

aParams.length, aParams);
var currentRequest = soapCall.asyncInvoke(

function (response, soapcall, error)
{

var r = handleSOAPResponse(response,soapcall,error);
if(aDoc){

aCallback(r,aTyp,aDoc);
}
else{

aCallback(r,aTyp);
}

}
);

}

The parseLinkCall() method parses the result of the SOAP response into a DOM tree
and calls the insertLink() method or returns an error if something went wrong. The
main code for the extraction of the XML from the response and the parsing into a DOM tree
is shown here:

var params = aResult.getParameters(false,num);
var xml = params[0].value;

var parser = new DOMParser();
var dom = parser.parseFromString(xml, "text/xml");

How the insertLinks() method works is described in the next section. The methods
used for the communication with SOAP are stored in the soap.js JavaScript file.

CHAPTER 5. IMPLEMENTATION 41

5.4 Integration of links
The integration of the links into the XHTML documents and the methods used for it are
discussed in this section. The handling of the XPointers and the visualization of the links are
presented in the next two subsections. We also present the layer sidebar of the iServext in the
last subsection.

5.4.1 Handling of the XPointers
From the iServer Web Service all the links and information about them are parsed into a
DOM tree as described in the Section 5.3. The insertLinks() method loops over all
the links in the DOM tree extracts the information about them. If the source of a link is an
XHTMLDocument the link information is written to an array. After the looping is finished
the insertWholeLayer() method inserts one layer on the top of the document with all
the links from this array. Otherwise, if the source is an XHTMLSelector, a layer is inserted
by the createLayer() method over the XPointer area.

The XPointers are parsed to ranges with the parseXPointerToRange method described
in Section 5.2. Each range then is split into a list of ranges which have the startContainter
equal to the endContainer. When this is done they can be surrounded by a tag. The
listRange() method which does this is based on the Annozilla project, but was enhanced
with new functionality. The handling of and
 tags is now supported as well as
the handling of tables. The listRange() method uses the evaluateNode() method
to check if a node is completely covered by a range. If it is not a text node the children are
visited and checked themselves. Otherwise, if a text node is just partly covered, it is split into
a covered node and not covered node for the further handling. These and some additional
methods are stored in the ranges.js JavaScript file.

The createLayer()method which calls the listRange() described above uses the list
of ranges to create layers over each range in the list and so cover the selection of the XPointer
it was composed from. Basically this is done by putting a around the elements
and computing the position as well as the size of them. If an element wraps onto new line,
all the parts of it are evaluated by the insertWalkLayer() method and for every line a
separate layer is created. The insertLayer() method, partly shown below, then creates
a div layer and sets the appropriate attributes for it. These are the position and size stored in
the aOrgElePos class and the behavior stored in the aLayerAttrs class. Afterwards the
div layer is inserted into the DOM tree of the document and marked that it is ignored by the
XPointer service.

function insertLayer(aLayerAttrs,aOrgElePos,aDoc){

//calls xpointer servcie
var xptrService = Components.classes["@mozilla.org/

xpointer-service;1"].getService();
xptrService = xptrService.QueryInterface(Components.

interfaces.nsIXPointerService);

42 5.4. INTEGRATION OF LINKS

//create the div tag
var div = aDoc.createElementNS(

"http://www.w3.org/1999/xhtml","div");
//set all attributes
div.setAttribute("id",aLayerAttrs.id);
div.setAttribute("class",aLayerAttrs.class);
div.setAttribute("style","left:"+aOrgElePos.xpos+"px;

top:"+aOrgElePos.ypos+"px;
width:"+aOrgElePos.elewidth+"px;
height:"+aOrgElePos.eleheight+"px;");

if(aLayerAttrs.onClick){
div.setAttribute("onclick",aLayerAttrs.onClick);
}
...
if(aLayerAttrs.title){

div.setAttribute("title",aLayerAttrs.title);
}
//insert the tag into the body
var bodyNode = aDoc.getElementsByTagName("body")[0];
bodyNode.appendChild(div);
xptrService.markElement(div);

}

This and some additional methods are stored in the iservext.js JavaScript file.

5.4.2 Visualization
The visualization of the layers is done through CSS7 and absolute positioned div layers. This
allows a very flexible handling of the link layers and the multiple layers on top of each other.

The CSS is added by the addCSS() method. It gets the information about the link
color preferences and adds stylesheet information about the layers and for the various
mouse pointers which are used to visualize the different types of layers, the direct links
and the indirect links. The indirect links use the the jsDOMenu to show the different
targets. The CSS for this JavaScript pop-up menu is added by the addJsDomenu(aDoc)
method. All this CSS code is added directly into the DOM tree of the document when it is
loaded. If neccessary layer styles for the incoming link layer and the original link layer are
added as well. The methods used for adding the CSS are stored in the css.js JavaScript file.

The div layers are simple <DIV> tags added to the DOM tree. The include all the information
about the link and are positioned absolute over the XPointer area they belong to. They are
also on different z-index levels according to the iServer layer they belong to. Since they are
transparent, the text and other layers below it are still visible. But only the topmost can be
accessed by clicking on it. To access the layers below the layer above has to be hidden. This
can be done by the Layer Sidebar which is described in the next subsection.

7Cascading Style Sheets, more information: http://www.w3.org/Style/CSS/

CHAPTER 5. IMPLEMENTATION 43

5.4.3 Layer Sidebar
The Layer Sidebar is used to display all names and colors of the iServer layers. It allows also
to deselect a layer and thus hide it. The user interface of a Firefox sidebar is written in XUL
and the functionality is done by JavaScript methods.

The Layer Sidebar registers a listener which is shown below when it is loaded. It reloads the
sidebar whenever a new document is loaded or the location is changed which means in this
case the tab is switched. This is done that always the correct layers for a document are shown
as selected.

var sidebarListener = {
QueryInterface: function(aIID)
{
if(aIID.equals(Components.interfaces.nsIWebProgressListener)
||aIID.equals(Components.interfaces.nsISupportsWeakReference)
||aIID.equals(Components.interfaces.nsISupports))
return this;
throw Components.results.NS_NOINTERFACE;

},
onStateChange: function(aProgress, aRequest, aFlag, aStatus)
{
if(aFlag & STATE_STOP){

// This fires when the load finishes
top.document.getElementById(’sidebar’).reload();

}
return 0;
},
onLocationChange: function(aProgress, aRequest, aURI)
{
// This fires when the location bar changes i.e load event
// is confirmed finished or when the user switches tabs
top.document.getElementById(’sidebar’).reload();

},
}

The settings for the layers in the sidebar is done dynamically by the getLayerPrefs()
and the setLayerPref() method. They get the colors of the layers form the preferences
and the visibility of them from the document. The attributes of the the tags in the XUL file
can be accessed and altered through the DOM tree of it.

By clicking on a layer in the Layer Sidebar it can be selected and deselected the state is shown
in a checkbox in front of the layer name. If a layer is deselected it is hidden in the browser
window by the changeLayer()method which alters the visibility style attribute of it. This
may help to increase the clarity if a document has many links.

44 5.5. AUTHORING

5.5 Authoring
In this section the authoring functionality of the iServext is presented. First the implementa-
tion of selection methods and then the main tool, the Authoring Sidebar, are discussed.

The selection of a source or a target is done through the right click context menu of the
browser. There we offer the new menu items Select source! and Select target!.
They call the targetXPointer() respectively the sourceXPointer()method which
check if the Authoring Sidebar is open and if it is not open a prompt window is shown and asks
the user if he wants to open it. Afterwards they call the insert insertSourceValues()
method which is shown below. This method creates an XPointer from the selection with
help of the XPointerLib (see Section 5.2). Aftwards it copies the XPointer and the URI of
the XHTML document into the Authoring Sidebar. If no selection is made only the URI is
copied.

function insertSourceValues(aType){

// Calls xptrService
var xptrService = Components.classes
["@mozilla.org/xpointer-service;1"].getService();

xptrService = xptrService.QueryInterface(
Components.interfaces.nsIXPointerService);

var xptrString = xptrService.createXPointerFromSelection(
selector(), focus_selector().document);

var urlString = url_selector();

//if nothing is selected empty xptrString
if(xptrString == ’xpointer(/html[1])’){
xptrString = ’’;

}

if(aType == ’source’){
top.document.getElementById(’sidebar’).contentDocument.
getElementById(’sourceSelectorXpointer’).value=xptrString;
top.document.getElementById(’sidebar’).contentDocument.
getElementById(’sourceDocumentUri’).value=urlString;

}
else if(aType == ’target’){
...

}
}

The naming and allocation of layers is then done in the Authoring Sidebar. The implementa-
tion of it is described in the next subsection.

CHAPTER 5. IMPLEMENTATION 45

5.5.1 Authoring Sidebar
The Authoring Sidebar is used to create new links between XHTML documents. Like the
Layer Sidebar described above the user interface is written in XUL and the functionality is
done by JavaScript methods.

The interface of the Authoring Sidebar is like a form, but since XUL does not offer form
functionality like for example HTML, the submission is done by JavaScript methods. The
input fields are simple XUL textboxes like the one shown here:

<textbox id="sourceSelectorXpointer" width="100"/>

When the form is submitted the checkForm() method checks if all the required fields are
filled and then the createXHTMLLink() method accesses the textbox values through the
DOM tree as shown here:

var sourceSelectorXpointer =
document.getElementById(’sourceSelectorXpointer’).value;

Afterwards all the values are written into a parameter array which is submitted through a
SOAP request to the createXHTMLLink() method (see Section 5.3) of the iServer Web
Service. If the link is successfully created it is sent back in a SOAP response and a pop up
window gives a confirmation to the user.

46 5.5. AUTHORING

6
Conclusions

In this chapter we draw conclusions from what we have done throughout this semester work.
Furthermore, we discuss the limitations of the current implementation and possible areas for
future work.

In our work we presented some insight into the topic of link augmentation in the theoretical
part. We have discussed current research projects and ideas for link visualization. We
have also looked on the possibilities offered by XLinks, although the current state of them
did not suit all our needs for our project, they open up interesting new prospects for the
future. Furthermore, the iServer framework was described and put in the context of link
augmentation.

The main goal of the semester work, as described in Chapter 1, was to develop a XHTML
plug-in for iServer. This was done successfully with an architecture using a Firefox extension
for the integration and visualization of XHTML iServer links as well as for the authoring of
them. We have described the details about the architecture and the implementation in the
Chapters 4 and 5.

During this work we were able to get to know the possibilities offered by Firefox extension
and the related technologies based on the Mozilla framework. The framework is suitable for
rapid implementation of Web augmentation projects which can be seamless integrated into
the Mozilla product family.

We were also able to show that without to much effort link augmentation on the Web could be
done. Techniques like multi destination links, additional information about link targets and
others could be implemented with little enhancement of the currently used components.

47

48 6.1. LIMITATIONS

6.1 Limitations
Although the main goals of this semester work have been reached some limitations of the
implementation remain. We will point them out in the following list. Some of them should
be removed with the enhancement discussed in the next section about future work.

• Only XHTML links are supported. Links to or from Resources or Selectors
other then XHTML Documents and XPointers cannot be displayed by the iServext and
no such links can be created.

• Frames are no supported. Websites which work with frames do not display the links
correctly and therefore the authoring of links to or from such websites is not allowed.

• Limitations of the XPointerLib. The XPointers of the XPointerLib can not resolve all
the selection made in a browser. Selections like the one with a picture in the beginning
and then some other elements cause problems.

• Unresolved issue with overlapping of selectors on a layer. If selectors overlap on a
layer only one of them can be accessed correctly in area in which they are intersecting.

• The incoming links are displayed after a time delay. Because the iServer Web Service
crashes if two simultaneous calls are made the call for the incoming has to be made after
a delay of three seconds and therefore delays the visualization of them in a document.

CHAPTER 6. CONCLUSIONS 49

6.2 Future Work
The idea to build an iServer framework with plug-ins to link all kinds of media types together
and navigate between is not fully reached by the XHTML plug-in architecture presented in
this work. To achieve this some of the following suggested ideas for future work would have
to be investigated. We also discuss some other ideas for improving the iServext.

An important issue is support of other link types then XHTML links. One point is the
visualization of them and the navigation to an other media type. This would need an
enhancement of the integration and visualization mechanism of the iServext. A second point
is the authoring of such links. Since this authoring is not intended to be done within the
iServext, an external authoring tool component should be used to handle the link creation.
Such a tool is currently under development. It directly accesses and manipulates the link
database. Some kind of interaction with the iServext will be necessary for the source and
target selection, but because the development is not finished yet, this has to be defined later.

For the development towards the collaborative information sharing like the iServer P2P [15]
some kind of user authentication is needed. This is not only an issue of future work for the
XHTML Plug-in, but also for the whole iServer framework.

There are also more specific areas within the iServext where future work could be done. An
idea is to provide dynamic layers instead of the fixed ten layers. Beforehand the layering
concept should be thought over also in the prospect of the work with the iServer P2P
architecture. Another direction of future could be that layers below other layers are made
accessible directly for example through a double click. In a later step the iServext could also
be localized for other languages then English. This is not really a technical issue but rather a
matter of translation.

Furthermore, the current limitations could be removed if they not already will be by the future
work described above. In the case of the XPointerLib the removal of the limitations might
be done by the Mozilla community, but at the moment no development on the XPointerLib
is done. It is intended that in a future version of the Firefox XPointers are supported natively
and this functionality could then be used instead.

50 6.3. ACKNOWLEDGEMENTS

6.3 Acknowledgements
First of all, I would like to thank Dr. Beat Signer for supervising my semester work. He gave
me the freedom to choose my own ways to reach the goals of this project and the guidance
to follow them successfully. Our meetings were always very fruitful and his revision of my
report very helpful.

I am grateful to Prof. Dr. Moira C. Norrie for giving me the opportunity to work on this
semester project. Furthermore, I would like to thank Alex de Spindler for his help setting
up and enhancing the iServer Web Service, Andreas Malär for correcting my report and giv-
ing me advice about its structure and Domenic Schröder for the inspiring discussions about
Firefox extensions.

List of Figures

2.1 Standard link visualization . 11
2.2 Visualization of the title attribute . 11
2.3 Additional links in Third voice . 13
2.4 Different mouse cursors in the Guide system 13
2.5 Link overlapping in Harmony . 13
2.6 Mock-up: Outgoing XLink anchors . 14
2.7 HyperScout . 15
2.8 Fluid links . 15
2.9 Visual preview . 15
2.10 Mock-up: Showing incoming link target . 16
2.11 iCab’s toolbar . 16
2.12 Points and Ranges (according to [35, p.14]) 19

3.1 iServer links . 22
3.2 iServer layers . 23
3.3 iServer user management . 24

4.1 Architecture overview . 30
4.2 Architecture of link integration and visualization 31
4.3 Architecture of link authoring . 32

5.1 Overview of methods called on pageload 38

B.1 Directory structure for iServer Web Service 60
B.2 Directory structure for the axis building folders 63
B.3 Extension installation window . 64
B.4 iServer options preference window . 65
B.5 Screenshot of the Firefox with the layer sidebar 66
B.6 Layer options preference window . 67
B.7 Screenshot of the Firefox with the authoring sidebar 68

51

52 LIST OF FIGURES

A
Development environment

This chapter describes some changes you can do to your system to make extension develop-
ment in Firefox easier. The description below is intended to work with Firefox 1.5, but most
parts should also work with Firefox 1.0.

The first section describes how to set up the development environment with a second Firefox
instance installed on your system. The second section contains information about the file
structure for an extension and the development cycle. At the end of this section we discuss
how to create the JavaScript documentation for an extension.

A.1 Set up environment
To prevent your daily used Firefox from potential crashes due to bugs in your extension
you have to create a separate profile. To do so, start the Firefox profilemanager by typing
./firefox -profilemanager (this assumes that you are in the firefox directory) in
your command line and then create a new profile.

You can run two instances of Firefox using separate profiles if you set MOZ NO REMOTE

environment variable to 1. For example, on Windows you can use the following bat file to
run Firefox with development profile, whether ”normal” Firefox is already running or not.
(Assuming your development profile is called ”dev”):

set MOZ NO REMOTE=1

53

54 A.1. SET UP ENVIRONMENT

firefox -p dev

Change the window icon

If you use a separate installation of Firefox for development you can change Firefox’s default
window icon to any icon you want. This makes it easier to distinguish the development
Firefox instance from the default Firefox. You change the icon by following these steps:

1. Go to the folder you installed Firefox in (for example C:\Program
Files\Mozilla Firefox dev\) and then go to the subfolder chrome.

2. While in chrome, create a new subfolder called icons, then go to that folder and create
yet another subfolder called default. The full path to this folder could be for example:
C:\Program Files\Mozilla Firefox dev\chrome\icons\default\

3. Choose the icon you want to use and then place it in this folder and rename it to
main-window.ico.

In addition to the main window, you can also change the icon on the Bookmark Manager and
JavaScript Console in the same way. The icon names are bookmark-window.ico and
jsconsoleWindow.ico, respectively.

Set development preferences

Before you start developing, you should set some preferences to make life easier. You access
them by typing about:config in your address bar.

• javascript.options.showInConsole = true. Logs errors in chrome files to the
JavaScript Console to make debugging easier.

• nglayout.debug.disable xul cache = true. Disables the XUL cache so that changes
do not require a restart.

• browser.dom.window.dump.enabled = true. Enables the use of the dump() statement
to print to the standard console. (The application must be started using the -console
flag)

• javascript.options.strict = true. Enables strict Javascript warnings in the JavaScript
Console. Note that since many people have this setting turned off when developing,
you will see lots of warnings for problems with their code in addition to warnings for
your own extension.

APPENDIX A. DEVELOPMENT ENVIRONMENT 55

Install development extensions

The following developer extensions are also very useful (The first two come with the standard
installation):

• The DOM Inspector is useful when you are trying to find the id of XUL elements which
you wish to modify .

• Not really a developer extension, but the JavaScript Console can be surprisingly useful.
Open it every time you have made changes to your JS files; it serves as a handy syntax
checker (but make sure you have set the preferences listed above).

• For a more advanced JavaScript aid, you can use Venkman1, the Mozilla-based
JavaScript debugger.

• Extension developer’s extension2 for Firefox/Thunderbird/Mozilla. Includes these
tools:

– Reload all chrome: Reloads a changed extension without restart

– JS Shell: Execute statements from main application window. Features tab com-
pletion!

– JS Environment: Run code snippets

– XUL Editor: XUL editor with real-time preview

– HTML Editor: HTML editor with real-time preview

– Extension Builder: A tool for editing install.rdf, packaging and installing your
extension, still under development

– As a bonus, it can invoke the debugging preferences listed above with a single
menu click.

• Console Filter3 helps you to find the relevant errors in the JavaScript Console.

• DebugLogger4 is a developer extension for Firefox that provides a better alternative to
using the dump statement. It breaks up debug statements to be unique per extension or
project and lets you view them independently in an empty console.

1http://www.mozilla.org/projects/venkman/
2http://ted.mielczarek.org/code/mozilla/extensiondev/
3http://forums.mozillazine.org/viewtopic.php?t=264146
4http://mozmonkey.com/debuglogger/

56 A.2. DEVELOPMENT

A.2 Development
For easier development install the extension in a non packaged structure, because otherwise
you have to make a new package each time you change something. How to work with an un-
packaged extension is described in this section. Also the development cycle and the creation
of the JavaScript documentation.

File structure of the iServext extension

You have to use two different file structures for the iServext. One for development (found
in \xhtml\iserver\src\) und one for packaging (found in CD:\iservext pack\).
The install.rdf and chrome.manifest files contain the information needed for registering the
extension. In the preferences.js the default preferences are stored. The content folder holds
all the JavaScript and XUL files needed in the iServext. The iservext.dtd contains the entities
for English. Other languages could be added in the respective folder. In the skin folder the
CSS files and all the pictures are stored.

Developing

helloworld/

chrome.manifest

install.rdf

defaults/

preferences/

preferences.js

content/

overlay.js

overlay.xul

...

locale/

en-US/

iservext.dtd

iservext.properties

skin/

iservext.css

...

Packaging

iservext.xpi/

chrome.manifest

install.rdf

defaults/

preferences/

preferences.js

chrome/

iservext.jar

content/

overlay.js

overlay.xul

...

locale/

en-US/

iservext.dtd

iservext.properties

skin/

iservext.css

...

The chrome.manifest is also different for development and packaging. The
chrome.manifest for packaging is printed below and contains an extra
jar:chrome/iservext.jar!. This points the extension manager to the jar file

APPENDIX A. DEVELOPMENT ENVIRONMENT 57

in the chrome folder.

overlay chrome://browser/content/browser.xul...

...chrome://iservext/content/iservext.xul

content iservext jar:chrome/iservext.jar!/content/

locale iservext en-US jar:chrome/iservext.jar!/locale/en-US/

skin iservext classic/1.0 jar:chrome/iservext.jar!/skin/

style chrome://global/content/customizeToolbar.xul

...chrome://iservext/skin/iservext.css

style chrome://browser/content/browser.xul

...chrome://iservext/skin/iservext.css

The chrome.manifest for developing is printed below and does not need any extra informa-
tion, because the files can be accessed directly.

overlay chrome://browser/content/browser.xul...

...chrome://iservext/content/iservext.xul

content iservext content/

locale iservext en-US locale/en-US/

skin iservext classic/1.0 skin/

style chrome://global/content/customizeToolbar.xul...

...chrome://iservext/skin/iservext.css

style chrome://browser/content/browser.xul...

...chrome://iservext/skin/iservext.css

For the packaging version the content, locale and skin folder are put into iservext.jar which is
a simple ZIP file. All the components are then added to iservext.xpi which is a ZIP file, too.
The iservext.xpi can be installed in any compatible Mozilla Firefox.

Registering your extension in the Extension Manager

As described above you can use an unpackaged version of your extension while developing.
If you do so, you have to register your extension manually. Proceed as follows:

The iservext’s unique GUID is {0d70c0bb-05a2-410d-b3f4-a91f3270a0bf}.
We assume your extension is in the folder C:\develop\iservext.

58 A.2. DEVELOPMENT

To register it, you put this line C:\develop\iservext in a textfile
named {0d70c0bb-05a2-410d-b3f4-a91f3270a0bf} and store it in
\profile folder\extensions\.

Development cycle

Once you have registered your extension following the steps above, developing your exten-
sion is quite easy. If you have set the development preferences, your development cycle will
be like this:

1. Edit your extension files.

2. Reopen the window, that modified files apply to, or use the Reload chrome feature of
the Extension Developer Extension.

• If you changed chrome.manifest, you will have to restart.

• If you changed install.rdf, you need to touch the extension folder specified in your
”GUID” file (update its Last modified time) and restart.

Further information about extension development can be found at:
http://kb.mozillazine.org/Extension development

Creating the JavaScript documentation

The JavaScript documentation we created with a slightly modified version of JSDoc5.
It is available at CD:\jsdoc\. All you need is a Perl runtime environment on your
computer with the HTML:Template module installed. For Windows we recommend
ActivePerl6 and the HTML:Template can be copied form the CD:\jsdoc\HTML\ into
PERL Home\lib\HTML\. The HTML:Template module is also available online7.

To easily create an new JavaScript documentation for iServext, you can use the
iservext jsdoc.bat which creates it from the files in the source folder. It is created
in the destination\iservext\ folder. You can edit the bat file to adapt the documen-
tation to your needs.

5http://jsdoc.sourceforge.net/
6http://www.activeperl.com/
7http://html-template.sourceforge.net/

http://kb.mozillazine.org/Extension_development�

B
User manual

In this chapter we provide a user manual for the installation of the iServer Web Service and
the iServext. This user manual also covers the usage of the iServext.

B.1 Installation
First, we define the prerequisites for the installation. In the next section the main steps of
setting up the the iServer Web Service are described and illustrated. In the following section
we the describe the installation of the iServext.

For the next steps the following prerequisites are required:

• The Tomcat Webserver1 is installed on your computer. We used a standalone Tomcat
4.1. All other version which are compatible with Axis Web Services2 can also be used.

• Firefox 1.0+ or newer is installed on your computer. A tested version of the Firefox
1.0+ can be found in the folder \xhtml\iservext\software\

• Your Firefox has the XPointerLib version 0.2.2.1 installed. It can be found in the folder
\xhtml\iservext\deploy\

If these requirements are met, you can start with the installation of the iServer Webservice.
1Information and download: http://jakarta.apache.org/tomcat/
2Information and download: http://ws.apache.org/axis/

59

60 B.1. INSTALLATION

B.1.1 Installing the iServer Webs Service
The installation of iServer Web Service consists mainly of copying the right files to the right
place. In the following TOMCAT HOME is assumed to be the directory where your Tomcat
Server has been installed. First you have to copy the Axis libraries as follows:

• Copy axis.jar, commons-discovery.jar, commons-logging.jar and
the wsdl4j.jar to the TOMCAT HOME\shared\lib\ directory on the application
server.

• Copy log4j-1.2.4.jar to the TOMCAT HOME\common\lib\ directory on the applica-
tion

• Copy jaxrpc.jar and the saaj.jar to the TOMCAT HOME\common\endorsed\ direc-
tory on the application server.

These files can be found in the folder \iserverp2p\lib\ or
CD:\axis for building\lib\

In the second step the iServer Web Service directory has to be created in, or copied to
TOMCAT HOME\webapps\. The directory structure should be as shown in Figure B.1. The
lib folder should contain: iserver.jar, jdom.jar, paperpp.jar, sigtec.jar,
xdatabase.jar, xhtml.jar and the xima.jar. The paperpp.jar has to be re-
placed by the ipaper.jar in a updated version.

Figure B.1: Directory structure for iServer Web Service

The classes folder contains the class files of the iServer P2P project in an adjusted version.
All these files can be found in the folder CD:\tomcat webapps\ and the jar files are also

APPENDIX B. USER MANUAL 61

in the deploy folder of the corresponding projects.

In the adjusted version the following was altered: The
XMLElementFactoryInitialiser class and the JdomOMInstanceElement

class in the org.ximtec.iserver.p2p.jdom package and the whole
org.ximtec.iserver.p2p.webservice package, too. Details about the changes in
this classes are given in the last subsection of this section.

Before the iServer Web Service can be used it has to be deployed in the Tomcat
Webserver. Therefore you have to make sure the web.xml exist in the WEB-INF

folder and the Tomcat is restarted. The web.xml should be already if you copied
the iServerWebService folder from CD:\tomcat webapps\ otherwise it can
be copied from there. Afterwards you can deploy the service by using the com-
mand below. In the classpath the following jar files have to be made avaible:
axis.jar, commons-discovery.jar, commons-logging.jar, jaxrpc.jar,
log4j-1.2.8.jar, saaj.jar and wsdl4j.jar.

java -cp \%cp\%;. org.apache.axis.client.AdminClient...

...deploy.wsdd

-l http://localhost:8080/iServerWebService/services/...

...AdminService

The deploy.wsdd file can be found in the CD:\axis for building\
classes\org\ximtec\iserver\p2p\webservice\ folder or generated as de-
scribed in the last subsection. For easier deployment of the Web Service you can use the
deploy.bat which lies in the same folder as the the deploy.wsdd. It is assumed that
your Tomcat path is http://localhost:8080 otherwise this has to be adjusted. If call
the deployment command it gives the following output if successful.

Processing file deploy.wsdd

<Admin>Done processing</Admin>

If it does not work you should recheck your classpath if the necessary files are included.
After you deployed the Web Service you can restart your Tomcat Webserver and open
the URL http://localhost:8080/iServerWebService/ services/IServerWeb
Service and you should see the massage ”Hi there, this is an AXIS service!”. If see this
massage your iServer Web Service is installed successfully.

After this first start of the Web Service a config.properties file is created in the direc-
tory in which your Tomcat Webserver ist running. This can be your TOMCAT HOME\bin or
if you use a standalone Tomcat Webserver your Tomcat startmenu folder for example. After
you have setup your database you have to adapt this file like we describe in the next section.

62 B.1. INSTALLATION

Set-up of the Database

For set-up you can use the files provided in the \xhtml\ folder. You can copy the
xhtmlDatabaseEmpty.dml and rename it to xhtmlDatabase.dml. In the
xhtmlDatabase.xml file you can define the users and possible predefined links you
want to use. After changing the XML file you have to run the dml update.bat and
then the OMS replace.bat. They will write the information from the XML file into the
database. The database is then ready for use.

Before you can use it you have the have to set the correct keys for the database name and
location in the config.properties file. Possible entries could look like this:

<entry key="DATABASE_NAME">xhtmlDatabase</entry>

<entry key="DATABASE_LOCATION">C:/develop/xhtml</entry>

After you have changed the file you restart the Tomcat Webserver and the iServer Web Service
is ready for usage.

Adding new methods

This section describes how you can add new methods to the iServer Webservice. If you do
not intend to do development of the iServext you can skip this section.

If you want to add a new method to the Web Service you can define it in
the IServerWebService class and then compile the class. Afterwards you
can copy the IServeWebService.class file into a folder you copied from
CD:\axis for building\classes\org\ximtec\iserver\p2p\webservice\
(see Figure B.2).
Then you can create new java files for the Web Service by using the JAVA2WSDL and
WSDL2JAVA methods. They are called as described below.

java -cp \%cp\%;. org.apache.axis.wsdl.Java2WSDL-o deploy.wsdl

-l "http://localhost:8080/iServerWebService/services/...

...IServerWebService"

-n "urn:IServerWebService"

-p"org.ximtec.iserver.p2p.webservice" "urn:IServerWebService"

org.ximtec.iserver.p2p.webservice.IServerWeb Service

java -cp \%cp\%;. org.apache.axis.wsdl.WSDL2Java -o .

-d Session -s -S true

-Nurn:IServerWeb Serviceorg.ximtec.iserver.p2p.WebService...

...deploy.wsdl

APPENDIX B. USER MANUAL 63

Figure B.2: Directory structure for the axis building folders

The classpath has to contain all the axis files as it does for deploying the Web Service. For
these two steps you can use the bat files in the CD:\axis for building\classes\
folder. After invoking these methods a new deploy.wsdl file and the new java files for
the Web Service will be generated.

These files you can copy back into your project folder and recompile them.
Before you compile them, you have to implement the method you have de-
fined in the IServiceWebService class. This has to be done in the
IServerWebServiceSoapBindingImpl class. Because all the methods in this
file are newly created it is easier to rename it before coping it to the project folder and then
just copy the new method into the original file.

When the method is implemented and the all Web Service classes are compiled you can copy
them into the iServer Web Service folder in your Tomcat directory. Afterwards you have to
restart the Tomcat Webserver.

If you want to add a new datatype in the Web Service you have to do this in two
files. They both are from the org.ximtec.iserver.p2p.jdom package. In the
XMLElementFactoryInitialiser class the new type has to be registered. This is
done by adding lines like the following which are for the XHTMLSelector. The packages
which are used have to be made available in the project and also the Tomcat lib folder.

XMLElementFactory.register(

org.ximtec.xhtml.core.XHTMLSelector.class.getName(),

org.ximtec.xhtml.jdom.XMLSchema.XHTML_SELECTOR,

64 B.1. INSTALLATION

JdomOMInstanceElement.class.getName());

In the JdomOMInstanceElement class a new constructor for the new datatype has to be
added. Like in the example for the XHTMLSelector below.

public JdomOMInstanceElement(XHTMLSelector xhtmlSelector) {

this((OMInstance)xhtmlSelector);

}

After you added the code you have to compile the package and copy it into the Tomcat
iServerWebService folder and restart the Tomcat Webserver.

B.1.2 Installing the iServext
The iServext can be installed as any other Firefox extension. You can open a the
iservext.xpi file which is located in the \xhtml\iservext\deploy\ folder. A
window like shown in Figure B.3 will pop up and you just have to click Install Now and after
a restart of your Firefox, the iServext will be installed.

Figure B.3: Extension installation window

Then you have to set the iServer Web Service preference. You can do this if you open Ex-
tensions in the Tools menu. There you have to select the iServext and click on options. The
preference window will show and you can select the iServer Options tab as shown in Fig-
ure B.4. There you have to set the URL of Web Service and the name of it. As in our example
http://localhost:8080/iServerWebService/services/ and IServerWebService respectively. You
also have to insert a user name which has to be defined in your database with help of the

APPENDIX B. USER MANUAL 65

XML file as described above. The password is not needed at the moment and you can also
turn the service on and off. For turning the service on and off you can also add an icon in
your toolbar. This is done by right clicking the toolbar and select customize. Then you can
drag and drop the iServext icon into your toolbar.

Figure B.4: iServer options preference window

After you performed all these steps, the XHTML plug-in for iServer, the iServext is ready for
use.

66 B.2. USAGE OF THE ISERVEXT

B.2 Usage of the iServext
The iServext can be used for browsing and authoring iServer XHTML links. In the next
section we cover how to set the preference and use the layer sidebar. In second section we
discuss the authoring of new links.

B.2.1 Browsing
For browsing you can use the iServext layer sidebar. It can be displayed by selecting iServext
layer in the sidebar choice of the View menu or by simply pressing the keys ctrl + Q. The
layer sidebar allows you to deselect layers which then are not displayed anymore. You can
see the color of the different layers, too.

Figure B.5: Screenshot of the Firefox with the layer sidebar

Whenever you load a new document the iServext checks whether iServer links exist for it. If
there are links they are displayed as shown in Figure B.5. The links which link to or from
the whole document are displayed in the upper left corner. If you click on the square, a list
with all the links shows up. Links which link to or from an XHTML Selector are displayed
in a colored layer over the selector area. If just one target is defined for a source, the mouse
pointer changes to the iServext symbol and you follow the link directly by clicking on the

APPENDIX B. USER MANUAL 67

layer. Otherwise, a list symbol is shown and the targets are displayed in a link list as shown
in Figure B.5.

Furthermore, you have the possibility to set various preferences. You can do this if you open
Extensions in the Tools menu. There you have to select the iServext and click on options.
The preference window will show as in Figure B.6.

Figure B.6: Layer options preference window

In the first box on the left side you set the opacity of the layers. In the second box you choose
if you want to replace the original links of a document by links on a layer and you can choose
the layer color for this layer. The third box lets you display incoming links and define the
color of the incoming link layer. On the right hand side you can choose if you want to use the
default layer colors for the outgoing link layers or custom colors. The custom colors can be
defined below for each layer.

B.2.2 Authoring of new links
For the authoring of new links the iServext offers the authoring sidebar. This sidebar can
be displayed by selecting iServext authoring in the sidebar choice of the View menu or by
simply pressing the keys ctrl + Y. Afterwards you can select a part of a document or the
whole document with a right click of the mouse and pressing of select source or select target
as shown in Figure B.7.

68 B.2. USAGE OF THE ISERVEXT

Figure B.7: Screenshot of the Firefox with the authoring sidebar

The selection is then shown in the appropriate fields in the sidebar. You also have the
possibility to give a name to the document and the selector and you have to give a name to
the link. If you want to link to a different document you just open a new tab and load it there
and then select the target. After you have finished you can submit the link and a confirmation
will show up if the creation was successful.

For the source and the target you can specify a layer. In case the selector already exists
on a layer you have to move it to another layer. The different layers for the targets are not
displayed in the browser in favor of clarity.

The iServer just uses a runtime version of the link database. If you want your newly created
links persistent you have to do this explicitly. You can do it by clicking iServext SaveDB! in
the tools menu. The current state of the database will then be committed and saved over the
latest version.

C
Reference to future work

In this chapter we will give some reference for future work on the limitations and the en-
hancement of the iServext. We discuss some ideas of possible approaches and point out the
appropriate code locations.

C.1 Remove limitations
In this section we present how some of the current limitations could be removed. The limita-
tion to XHTML links is discussed in the next section about new features which would in this
case be the support of other links.

Support of frames

Websites with frames are currently not supported because we only insert the link informa-
tion into the main page which does not work if this page is the parent of other pages in frames.

We suggest that these limitations are removed by the enhancement of the newPageLoad()
method in the overlay.js file. The aDoc object which represents the current document
could be examined if it has frames as children. In the case it does the link information for
each of them could be called from the link database and implemented.

69

70 C.1. REMOVE LIMITATIONS

Handling of Selector intersections

If a Selector intersects with another one the correct visualization of both cannot be
provided. One approach would be to prohibited the use of such selectors at the time of link
creation. Another approach could be the handling of them at the time of the link integration
and visualization.

For the second approach a redesign of the current link visualization and accessing model
would have to be done. Instead of accessing the links through the layer behavior they could
be accessed through a map of coordinates of the layers and the current mouse position. There-
fore, all the layer coordinates of the links would have to be written into a kind of table and on
mouse click the position of the mouse pointer had to be checked and the appropriate action
chosen. If this would be the best method for doing this would have to be reconsidered more
exhaustively.

Removing the time delay

The problem with the time delay is an issue of the iServer Web Service. As soon as it is
fixed, the time delay in the iServext can be removed. To remove it the setTimeout()
method shown below can be replaced by just the getIncomingLinks() method in the
newPageLoad() method in the overlay.js file.

//if incoming links are displayed add the layer and get them

if(getPrefBranch().getBoolPref(’incominglayer’)){

addIncomingLayer(doc);

setTimeout("getIncomingLinks();",5000);

}

The getIncomingLinks() can then be called with the document object as an argument
like the getOutgoingLinks(doc) method. It has to be adapted to handle the argument.
The global variable gDoc in the getLinks.js file could then be removed as well.

APPENDIX C. REFERENCE TO FUTURE WORK 71

C.2 New features
Some of the possible new features of the iServext are discussed in this section. In some cases
they also could remove some current limitations.

Dynamic layers

Instead of the ten fix layers, dynamic layers could be used. The layer information is stored in
the link database and also provided in the link information.

In the inserLinks() method this information is already extracted as shown here:

var layerName = sources[q].getElementsByTagName(’layer’)[0].

getElementsByTagName(’name’)[0].firstChild.nodeValue;

This information could be used to dynamically create the appropriate CSS classes and insert
them with the help of a modified addCSS() method which is found in the css.js file.
The insertWholeLayer() would not have to be changed since only one layer for
incoming links and one for the outgoing is used.

Beforehand it would advisable to consider if such dynamic layers also could be used with
iServer P2P or if general adaptations to current layer usage would have to be made.

Support of other links

The support of other link type surly has to be a goal of the future development of the iServext.
Only then the whole advantages of the iServer framework can be fully exploited.

The integration of other targets then XHTML documents could be done in the
insertLinks() method found in the getLinks.js file. The extraction of the
link information could be done exactly the same way it is done for the XHTML links. The
actions for the onClick event would have to be set appropriate to the target media. How
the target media would be displayed depends mainly on the state of the tools available for
the iServer framework at the time of implementation. For an external application maybe a
MIME type would have to be defined in Firefox.

For the visualization of different target media, the mouse pointer could be used with different
symbols. The symbols could be chosen similar the code below used for PDFs or with the
help additional link information.

//If the resource is a pdf set the icon for it

if(aTargetUri[w].indexOf(’.pdf’) >= 0){

72 C.2. NEW FEATURES

menuTextString += ’cursorMenu_’+aLinkNr+’.items.item’ +w+

’.showIcon("icon_pdf", ""); \n’;

}

else{

menuTextString += ’cursorMenu_’+aLinkNr+’.items.item’ +w+

’.showIcon("icon1", ""); \n’;

}

The authoring of links other than XHTML links should be done in external tool for example
the authoring tool. The possible collaboration with it is described in the next subsection.

Collaboration with the authoring tool

The collaboration with the authoring tool could be through SOAP if it is going to offer a
Web Service or through socket communication. If SOAP is used the current methods in the
soap.js file could be adapted. Information about socket communication within a Firefox
can be found on XULPlanet1. We cannot provide more detailed information at the moment
because the final API of the authoring tool is not available yet.

Localization

The localization of the iServext is very simple due to the use of dtd and properties
files. The iservext.dtd and the iservext.properties files both found in the
chrome://iservext/locale/en-US/ folder have to be translated and copied for ex-
ample into the chrome://iservext/locale/de-DE/ folder for the German transla-
tion. In the chrome.manifest file a line as shown below has to be added.

locale iservext de-DE locale/de-DE/

1http://www.xulplanet.com/references/xpcomref/group Network.html#Sockets

Bibliography

[1] Kenneth M. Anderson. Integrating open hypermedia systems with the world wide web.
In HYPERTEXT ’97: Proceedings of the eighth ACM conference on Hypertext, pages
157–166. ACM Press, 1997. Southampton, United Kingdom.

[2] Kenneth M. Anderson, Richard N. Taylor, and Jr. E. James Whitehead. Chimera: hyper-
text for heterogeneous software environments. In ECHT ’94: Proceedings of the 1994
ACM European conference on Hypermedia technology, pages 94–107. ACM Press,
1994. Edinburgh, Scotland.

[3] Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Fernández, Michael Kay,
Jonathan Robie, and Jérôme Siméon. Xml path language (xpath) 2.0. W3C Working
Draft 04 April 2005 http://www.w3.org/TR/xpath20/.

[4] Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu, Jonathan Robie,
and Jérôme Siméon. Xquery 1.0: An xml query language. W3C Working Draft 04
April 2005 http://www.w3.org/TR/xquery/.

[5] Niels Olof Bouvin. Unifying strategies for web augmentation. In HYPERTEXT 1999,
Proceedings of the 10th ACM Conference on Hypertext and Hypermedia: returning to
our diverse roots, pages 91–100, Darmstadt, Germany, 1999. ACM.

[6] Niels Olof Bouvin. Augmenting the web through open hypermedia. Phd, University of
Aarhus, 2000.

[7] L. A. Carr, W. Hall, and S. Hitchcock. Link services or link agents? In HYPERTEXT
’98: Proceedings of the ninth ACM conference on Hypertext and hypermedia : links,
objects, time and space—structure in hypermedia systems, pages 113–122. ACM Press,
1998. Pittsburgh, Pennsylvania, United States.

[8] L. A. Carr, D. De Roure, W. Hall, and G. Hill. Implementing an open link service for
the world wide web. World Wide Web, 1(2):61–71, 1998.

[9] Leslie Carr, David De Roure, Wendy Hall, and Gary Hill. The distributed link service:
A tool for publishers, authors and readers. In Proceeding of the 4th International World
Wide Web 95 Conference, Boston, USA, 1995.

73

74 BIBLIOGRAPHY

[10] Leslie Carr, Gary Hill, David de Roure, Wendy Hall, and Hugh Davis. Open informa-
tion services. In Proceedings of the fifth international World Wide Web conference on
Computer networks and ISDN systems, pages 1027–1036. Elsevier Science Publishers
B. V., 1996. Paris, France.

[11] Bent Guldbjerg Christensen and Frank Allan Hansen. Xlink - linking the web and open
hypermedia. In David Millard, Jrg M. Haake, and Siegfried Reich, editors, Proceedings
of the 2002 Workshop on Open Hypermedia Systems, College Park, Maryland, 2002.

[12] Bent Guldbjerg Christensen, Frank Allan Hansen, and Niels Olof Bouvin. Xspect:
Bridging open hypermedia and xlink. In Proceedings of the Twelfth International World
Wide Web Conference, pages 490–499, Budapest, Hungary, 2003. ACM Press.

[13] Paolo Ciancarini, Federico Folli, Davide Rossi, and Fabio Vitali. Xlinkproxy: External
linkbases with xlink. In Ethan V. Munson, Richard Furuta, and Jonathan I. Maletic,
editors, Proceedings of the 2002 ACM Symposium on Document Engineering, pages
57–65, McLean, Virginia, 2002. ACM Press.

[14] James Clark and Steven J. DeRose. Xml path language (xpath) version 1.0. W3C
Recommendation 16 November 1999 http://www.w3.org/TR/xpath.

[15] Alexandre de Spindler. Distributed Collaborative Information Environment based on
iServer. Diploma thesis, Swiss Federal Institute of Technology (ETHZ), 2005.

[16] Steven J. DeRose. Xml linking. ACM Comput. Surv., 31(4es):21, 1999.

[17] Steven J. DeRose, James Clark, and David Orchard. Xml linking language (xlink)
version 1.0. W3C Recommendation 27 June 2001 http://www.w3.org/TR/xlink/.

[18] Steven J. DeRose, Ron Jr. Daniel, Eve Maler, and Jonathan Marsh. Xpointer xmlns()
scheme. W3C Recommendation 25 March 2003 http://www.w3.org/TR/xptr-xmlns/.

[19] Steven J. DeRose, Eve Maler, and Ron Jr. Daniel. Xpointer xpointer() scheme. W3C
Working Draft 19 December 2002 http://www.w3.org/TR/xptr-xpointer/.

[20] Anthony J. Duhig. Separating links from content using xml, xlink and xpointer. In
Proceedings of XML Europe 2001, Berlin, Germany, 2001.

[21] Kaj Grønbæk, Niels Olof Bouvin, and Lennert Sloth. Designing dexter-based hyperme-
dia services for the world wide web, 1997. Southampton, United Kingdom.

[22] Kaj Grønbæk, Lennert Sloth, and Niels Olof Bouvin. Open hypermedia as user con-
trolled meta data for the web. In Proceedings of the 9th international World Wide Web
conference on Computer networks : the international journal of computer and telecom-
munications netowrking, pages 553–566. North-Holland Publishing Co., 2000. Amster-
dam, The Netherlands.

BIBLIOGRAPHY 75

[23] Kaj Grønbæk, Lennert Sloth, and Peter Ørbæk. Webvise: browser and proxy support
for open hypermedia structuring mechanisms on the world wide web. In WWW ’99:
Proceeding of the eighth international conference on World Wide Web, pages 1331–
1345. Elsevier North-Holland, Inc., 1999. Toronto, Canada.

[24] Paul Grosso, Eve Maler, Jonathan Marsh, and Norman Walsh. Xpointer element()
scheme. W3C Recommendation 25 March 2003 http://www.w3.org/TR/xptr-element/.

[25] Paul Grosso, Eve Maler, Jonathan Marsh, and Norman Walsh. Xpointer framework.
W3C Recommendation 25 March 2003 http://www.w3.org/TR/xptr-framework/.

[26] Wendi Hall, Hugh Davis, and Gerard Hutchings. Rethinking hypermedia the microcosm
approach. Kluwer, Boston etc., 1996. by Wendi Hall, Hugh Davis, Gerard Hutchings
25 cm Ill.

[27] W3C and INRIA. Amaya project. http://www.w3.org/Amaya/.

[28] Michael Kay. Xsl transformations (xslt) version 2.0. W3C Working Draft 4 April 2005
http://www.w3.org/TR/xslt20/.

[29] Theodorich Kopetzky and Max Mühlhäuser. Visual preview for link traversal on the
world wide web. Computer Networks: The International Journal of Computer and
Telecommunications Networking (Proceeding of the eighth international conference on
World Wide Web), 31(11-16):1525–1532, 1999.

[30] Hermann Maurer. HyperWave the next generation Web solution. Addison-Wesley, Har-
low, England etc., 1996. Hermann Maurer; [foreword by Robert Cailliau] Ill. 1 CD-
ROM.

[31] Débora C. Muchaluat-Saade, Rogério F. Rodrigues, and Luiz Fernando G. Soares.
Xconnector: Extending xlink to provide multimedia synchronization. In Proceedings of
the 2002 ACM symposium on Document engineering, pages 49–56, McLean, Virginia,
USA, 2002. ACM Press.

[32] Jakob Nielsen. Using link titles to help users predict where thea are going, 11. January
1998 1998. Availble at: http://www.useit.com/alertbox/980111.html.

[33] Hartmut Obendorf and Harald Weinreich. Comparing link marker visualization tech-
niques - changes in reading behavior. In Proceedings of 12th International World Wide
Web Conference - WWW 2003, Budapest, HUNGARY, 2003.

[34] Glenn Oberholzer and Erik Wilde. Openly accessing linkbases. Technical Report TIK-
Report No. 134, Computer Engineering and Networks Laboratory, Swiss Federal Insti-
tute of Technology, January 2002.

76 BIBLIOGRAPHY

[35] Simon Schulé. XHMTL Plug-in for the iServer Architecture. Diploma thesis, Swiss
Federal Institute of Technology (ETHZ), 2004.

[36] Beat Signer and Moira C. Norrie. A framework for cross-media information manage-
ment. In Proceedings of EuroIMSA 2005, International Conference on Internet and
Multimedia Systems and Applications, Grindelwald, Switzerland, 2005.

[37] Fabio Vitali, Federico Folli, and Claudio Tasso. Two implementations of xpointer. In
HYPERTEXT ’02: Proceedings of the thirteenth ACM conference on Hypertext and
hypermedia table of contents, pages 145–146, College Park, Maryland, USA, 2002.
ACM Press.

[38] W3C. Annotea project. http://www.w3.org/2001/Annotea/.

[39] W3C. Cascading style sheets. http://www.w3.org/Style/CSS/.

[40] Harald Weinreich, Hartmut Obendorf, and Wienfried Lamersdorf. The look of the link
- concepts for the user interfac of extended hyperlinks. In HYPERTEXT 2001, Pro-
ceedings of the 12th ACM Conference on Hypertext and Hypermedia, pages 19–28,
University of Aarhus, rhus, Denmark, 2001. ACM.

[41] Harald Weinreich, Hartmut Obendorf, and Wienfried Lamersdorf. Hyperscout: Darstel-
lung erweiterter typinformationen im world wide web - konzepte und auswirkungen. In
Gerd Szwillus Jrgen Ziegler, editor, Mensch und Computer 2003, Berichte des German
Chapter of the ACM, pages 155–164. B.G. Teubner Verlag Stuttgart, Leipzig, Wies-
baden, 2003.

[42] Harald Weinreich, Hartmut Obendorf, and Wienfried Lamersdorf. Hyperscout:
Linkvorschau im world wide web. i-com: Zeitschrift fr interaktive und kooperative
Medien, 1(3):4–12, 2003.

[43] Erik Wilde and David Lowe. XPath, XLink, XPointer, and XML a practical guide to Web
hyperlinking and transclusion. Addison-Wesley, Boston, MA, 2003. Erik Wilde, David
Lowe Ill.

[44] Polle T. Zellweger, Bay-Wei Chang, and Jock D. Mackinlay. Fluid links for informed
and incremental link transitions. In HYPERTEXT ’98: Proceedings of the ninth ACM
conference on Hypertext and hypermedia : links, objects, time and space—structure in
hypermedia systems, pages 50–57. ACM Press, 1998. Pittsburgh, Pennsylvania, United
States.

