
Active Components

Semester Thesis

Samuel Willimann
<wsamuel@student.ethz.ch>

Prof. Dr. Moira C. Norrie

Dr. Beat Signer

Global Information Systems Group
Institute for Information Systems
Department of Computer Science

17th July 2006

Copyright©Winter Semester 2005/2006 Global Information Systems Group.

Abstract

The Integration Server(iServer) architecture is an extensible cross-media link server plat-
form enabling links between different types of media [2]. Ithas been applied within the
PaperWorksandPaper++ projects to define links between paper and digital content and vice
versa. The philosophy of the iServer architecture is to provide basic link functionality (in-
cluding user management etc.) which then can be extended to support different kinds of new
physical or digital content.
More recently, the concept ofActive Componentshas been introduced to support not only
links to different media types (e.g. paper, movies, etc.), but also to integrate small pieces of
program logic. However, it has not yet been possible to definethe structure of these Active
Components (such as properties, methods, etc.) in an abstract fashion, and the authoring of
Active Components has been limited to raw XML input only.
As part of this semester project, a visual authoring tool hasbeen created, which is supposed
to simplify the design and development of Active Componentsby providing a simple user
interface for schema specification and class binding definitions.
Another effort went into enhancing the existing framework [1] to allow Active Components
to communicate with each other, essentially through a very simple form of remote method
invocation, and to investigate and eliminate other limitations of the framework.

iii

iv

Contents

1 Introduction 1
1.1 iPaper and iServer . 1
1.2 Active Components . 2
1.3 Motivation and Goal . 2

1.3.1 Active Component Intercommunication 2
1.3.2 Active Component Properties . 2
1.3.3 Authoring Support . 2

2 Design 3

2.1 Existing Concepts of Distributed Computing 3
2.1.1 Java RMI . 3
2.1.2 CORBA . 4
2.1.3 Microsoft DCOM . 5

2.2 The Existing Active Component Framework 6
2.2.1 Limitations . 6

2.3 The Extended Active Component Framework 7
2.3.1 Remote Method Invocation . 7
2.3.2 Persistent logics with a static state 8
2.3.3 Global properties . 8
2.3.4 Generic Action Events instead of Pen Events 8
2.3.5 Multiple stubs running at the same time 9
2.3.6 Simplified design process with authoring tools 9

3 Implementation 11

3.1 Package Structure . 11
3.2 The Classes . 12

3.2.1 ActiveComponent . 12
3.2.2 ActiveComponentLogic . 12
3.2.3 ActiveComponentStub . 13
3.2.4 ActiveComponentManager . 13
3.2.5 ActiveComponentBinding . 13
3.2.6 ActiveComponentSchema . 14
3.2.7 Schema Types . 14

3.3 Improvements and Extensions . 15
3.3.1 Internal Property Handling . 15
3.3.2 Static Logics . 15
3.3.3 Multiple Stubs . 16

v

vi CONTENTS

3.3.4 Generic Action Events . 16
3.4 The Demo Application . 16
3.5 Conclusion . 17

3.5.1 Source Code Comparison . 17

4 Authoring 21

4.1 Documentation . 21
4.1.1 A framework of singletons . 21
4.1.2 Active Components are managed 22
4.1.3 Location of Schemas and Bindings 22
4.1.4 Running the Authoring Tool . 22
4.1.5 Visual Editor . 23

4.2 Design of the Authoring Tool . 24
4.2.1 The Binding Editor . 24
4.2.2 The Schema Editor . 25

4.3 Authoring Tool Manual . 26
4.3.1 Maintaining Bindings . 26
4.3.2 Editing Schemas . 28

5 Conclusion andFuture Work 31

5.1 Future Work . 31
5.1.1 Eliminating Binding and Schema Duplication 31
5.1.2 Replacing Schema Types . 31
5.1.3 Documentation and Developer Manual 32
5.1.4 Bits and Pieces . 32
5.1.5 Integrated Authoring Tool and Eclipse Integration 32

A Appendix A 33

B Appendix B 35

1
Introduction

1.1 iPaper and iServer

As part of the sixth European framework program,PaperWorks1 is a collaboration of differ-
ent European partners designated to develop and assess innovative concepts and systems to
enrich the use of paper in everyday settings. Being one of these partners, theGlobal Infor-
mation Systems group(GlobIS)2 at ETH Zurich has been developing the server technologies
responsible for managing the digital media and the links between paper and digital resources.
The framework is based on a client-server architecture. A special pattern is printed on sheets
of paper, encoding physical coordinates and a unique document number. This information is
read by a digital pen, which sends the data to a transformer component on the client device.
In most cases an HTTP request is then generated and transmitted to the link management
server (iServer) that processes the request and returns theinformation linked to the specified
document area. TheExtensible Information Management Architecture(XIMA) passes the
response back to the client device in the appropriate format.

Augmented

Document

Input Decoder

and Output Device

XIMA Server iServer with

iPaper Plug-in

Encoded

Position

HTTP Request

Response

Figure 1.1: Functional overview of interactive paper

1www.paper-works.org
2www.globis.ethz.ch

1

2 1.2. ACTIVE COMPONENTS

1.2 Active Components

In order to understand the motivation of this work, it is necessary to know the basic concept of
Active Components. Document areas as described above have usually been linkedto simple
media contents (resources) such as web pages or movie clips.The use of resources was rather
limited, because upon every location event from the pen, only one resource could be triggered.
The introduction of a new resource type, theActive Component, then allowed adding program
logic and performing small tasks, such as capturing notes, using text-to-speech functionality,
or sending OLE commands to external applications.

1.3 Motivation and Goal

Despite this great advantage, Active Components have been subjected to some restrictions
however. The goal of this thesis is to investigate and eliminate some of these restrictions and
to support the user in designing custom Active Components more easily. Therefore, a simple
authoring tool is introduced in Chapter 4.

1.3.1 Active Component Intercommunication

Sometimes it would be an advantage if Active Components could exchange messages or if
one component could use another component’s functionality. The idea of Active Component
intercommunication is described in Section 2.3.1. In orderto demonstrate the benefit of Ac-
tive Component intercommunication, a small example application is presented in Section 3.4.

1.3.2 Active Component Properties

In the existing framework, properties of Active Componentsare represented internally as
pairs of stringsp = (id, v), whereid denotes the property’s identifier andv its value. In
order to simplify the use of other property types, i.e. integers, booleans or even objects,
the mechanism of storing and retrieving data from or to the database has been adapted as
described in Section 3.3.1.

1.3.3 Authoring Support

The Active Component framework has become quite a complex system. Managing all the
different files and settings turns out to be cumbersome at times. As a first step to reduce this
complexity, our authoring tool supports the user in severalways:

� Definition of Active Components (schemas), i.e. their public properties and methods

� Definition of Active Component bindings, i.e. provide a Javarepresentation (stub and
logic) for a given identifier

2
Design

To discuss the decisions made in the design of the new Active Component framework, we
first look at some existing infrastructures coping with distributed systems. We are then going
to investigate which concepts are really used in the Active Component framework and where
its design diverts from existing solutions.
In the following three sections, a quick description of someof the most popular solutions of
distributed computing frameworks, Java RMI, CORBA, and Microsoft DCOM, is given.

2.1 Existing Concepts of Distributed Computing

2.1.1 Java RMI

Remote Method Invocation(RMI) [7, 8] is a Java application programming interface forper-
forming remote procedure calls(RPC). It is not a new concept though, because even C pro-
grammers have been using RPC semantics to execute a functionon a remote host. What
makes RMI different is that in Java it is necessary to packageboth data and methods and ship
both across the network (RPC works on data structures primarily), and the recipient must also
be able to interpret the object after receiving it.
In order to accomplish this, client and server must both knowthe exact interface of the remote
object, which, of course, has to be the same on both sides. Hence, a client can only call a
method of a remote object (adaptor) which implements the same interface as its correspond-
ing stub (proxy) on the client side.
The correct methods are looked up and bound by the RMI Registry. A sketch of the RMI
mechanism is depicted in Figure 2.1. RMI allows entire objects to be passed and returned
as parameters, unlike many RPC-based mechanisms which require parameters to be either
primitive data types, or structures composed of primitive data types. That means that any
Java object can be passed as a parameter—even new objects whose class has never been
encountered before by the remote virtual machine.

3

4 2.1. EXISTING CONCEPTS OF DISTRIBUTED COMPUTING

Interface

Client

Application

Server Class
(object implementation)

RMI Registry
RMI Stub
("proxy")

RMI Skeleton
("object adapter")

RMI RMI

lookup() bind()

Network

Figure 2.1: Java RMI

However, RMI is strongly tied to the Java language, and interoperability between Java pro-
grams and other legacy systems often involves developing anappropriate interface.

2.1.2 CORBA

TheCommon Object Request Broker Architecture(CORBA) [6, 7, 8] defines APIs, communi-
cation protocols, and object/service information models to enable heterogeneous applications
written in various languages running on various platforms to interoperate. CORBA there-
fore provides platform and location transparency for sharing well-defined objects across a
distributed computing platform.

IDL

Stubs

IDL

Skeleton

Object

Adapter

IDL Compiler

ORB
Server

Implementation

Client

Implementation

IIOP

Figure 2.2: The CORBA model

In a general sense CORBA “wraps” code written in some language into a bundle containing
additional information on the capabilities of the code inside, and how to call it. The resulting
wrapped objects can then be called from other programs over the network.

CHAPTER 2. DESIGN 5

CORBA uses an interface definition language (IDL) to specifythe interfaces that objects will
present to the world. CORBA then specifies a “mapping” from IDL to a specific implemen-
tation language like C++ or Java. This mapping precisely describes how the CORBA data
types are to be used in both client and server implementations.

2.1.3 Microsoft DCOM

The Distributed Component Object Model(DCOM, [4, 5, 6, 8]) is Microsoft’s solution for
supporting distributed computing with objects and is an extension of theComponent Object
Model(COM). DCOM was a major competitor to CORBA, but has been deprecated in favor
of Microsoft .NET, which will not be discussed further here.

Proxy

Object
Stub

Client Component

SCM SCM

OLE32

Security

Provider
DCE RPC

Protocol Stack

Security

Provider
DCE RPC

Protocol Stack

CoCreateInstance CoCreateInstance

(Remote) Activation

DCOM

Network

Protocol

Figure 2.3: Microsoft DCOM

The COM libraries look up the appropriate binary (dynamic-link library or executable) in the
system registry, create the object, and return an interfacepointer to the caller.
For DCOM, the object creation mechanism in the COM librariesis enhanced to allow object
creation on other machines. In order to be able to create a remote object, the COM libraries
need to know the network name of the server. Once the server name and the Class Identifier
(CLSID) are known, a portion of the COM libraries called the service control manager (SCM)
on the client machine connects to the SCM on the server machine and requests creation of
this object. Like CORBA, DCOM is language independent.

6 2.2. THE EXISTING ACTIVE COMPONENT FRAMEWORK

2.2 The Existing Active Component Framework

Before we get into describing the design of the new Active Component framework and its
improvements, we give a quick overview of the existing architecture. The following diagram
depicts the current Active Component framework.

Client Manager

Bindings

Server Manager

Bindings

Active Component

(Stub)

Active Component

(Logic)

iS
e

rv
e

r

iP
a

p
e

r
C

li
e

n
t

HTTP

R
e

q
u

e
st

 S
e

n
d

e
r

Client Server

Figure 2.4: The previous Active Component framework

Upon every event from the pen, an HTTP message containing thecorresponding location
coordinates is sent to iServer, which then searches for the resource linked to this location. If
the resource is an Active Component, its logic is initiated on the server side and its properties
are loaded from the database. The new logic subsequently sends an XML representation of
itself (i.e. its properties) back to the client which instantiates the matching component stub
with these properties.
The same unique identifier is used on both sides to identify anActive Component. The
corresponding class names are resolved by theActive Component Resolverwhich reads the
bindings from an XML file. Bindings are tuplesb = (id, logic, stub), where

id unique identifier of the Active Component
logic complete package and class name of the component’s logic
stub complete package and class name of the component’s stub

Both, stub and logic, will only stay “alive” as long as it takes to handle the request. In other
words, those objects are created literally with every click. Both classes implement a specific
method which is executed as soon as they have been initialized. In most cases, the objects are
instantly terminated after the execution of this method.

2.2.1 Limitations

The following list contains some of the limitations of the existing framework that we tried
to solve in this project. The subsequent section describes in detail how the various problems
were approached and how the new enhanced system works.

� Active Components are isolated. They cannot communicate with each other.

� Properties of Active Components are only provided as pairs of strings and have to be
loaded and parsed manually by the developer.

CHAPTER 2. DESIGN 7

� Properties (and Active Components themselves) cannot be made persistent; thus Active
Components are stateless.

� Although iPaper is an important part of the framework, the Active Components are too
tightly connected with the iPaper framework. In this respect, the design is not generic
enough.

� Creating a new Active Component involves small modifications in several files dis-
tributed all over the system. There is no tool that takes careof these tedious but neces-
sary modifications automatically.

2.3 The Extended Active Component Framework

Essentially, the overall design of the framework has not changed much. We tried to keep
as much functionality from the original framework as possible. Although the modifications
are subtle, they significantly reduce the amount of necessary code in both new and existing
Active Components.
In order to implement those modifications, the existing framework has been extended, the
class hierarchy restructured, and new types introduced. The packages and classes of the new
framework are described in full detail in Chapter 3.

Client Manager

Bindings

Server Manager

Bindings

Active Component

(Stub with Schema)

Active Component

(Logic with Schema)

iS
e

rv
e

r

iP
a

p
e

r
C

li
e

n
t

HTTP

with “RMI”R
e

q
u

e
st

 S
e

n
d

e
r

Client Server

staticmultiple instances

single instance on demand

Static

properties

Static

properties

Figure 2.5: The extended Active Component framework

We are now going to take a closer look at the new features, whatbenefits they can offer and
how they exactly work.

2.3.1 Remote Method Invocation

Similarly to Java’s RMI, we wanted to allow Active Components to interact with other com-
ponents through a simple mechanism of remote method invocation. As explained earlier, we
were looking for a much simpler approach than the one provided by RMI though. Basically,
we only wanted to allow Active Components to exchange simpledata such as integers or
strings, or to trigger (idempotent) methods. The terminology of remote method invocation
may be misleading, because it has got nothing to do with Java RMI. But the fact remains that
it actually is a remote method invocation mechanism, initiated by Active Components, and
delegated by the Active Component managers.

8 2.3. THE EXTENDED ACTIVE COMPONENT FRAMEWORK

Any Active Component can call a method of any other component, if it knows the name of
the method as well as the number and types of the expected arguments. Due to the distributed
architecture of the framework, Active Component stubs cannot directly access methods of
Active Component logics (or even the objects themselves), and vice versa. The delegation of
method invocations is therefore handled by the Active Component manager objects.
Usually, Active Components have a very short lifecycle. In order to be able to invoke remote
methods, it must be possible to load Active Components dynamically (in case they have
not been instantiated yet), and to prevent them from being destroyed immediately after the
action event. While the Active Component manager takes careof the dynamic component
loading, the user can specify whether the component should be destroyed directly in the class
implementation. This approach allows a component to dynamically determine whether it
needs to remain active, or whether it can be disposed of.

2.3.2 Persistent logics with a static state

The introduction of persistent logics is a direct consequence of the remote method invocation
mechanism described above. Methods can only be invoked on Active Components which are
currently loaded, which makes it necessary to load them dynamically if they are not already
running.
Furthermore, persistent components can also be used as “aggregators” which collect data
from other components. Imagine an interactive reservationform where the user can choose
between different options. Only if the user has specified allrequired data and selects the OK
button the request will be processed.

2.3.3 Global properties

If the developer does not intend to make an Active Component logic persistent, but still wants
to allow different components to share common values, global properties can be used instead.
Global properties can be set and read by any Active Component. They will be available as
long as the system is running, unless they are explicitely removed by an Active Component.
Global properties are a very quick and simple way to share data among Active Components,
but there are also some limitations. For instance, Active Component stubs can only access
properties written by another stub, and Active Component logics can only access properties
written by other logics. The properties are not shared across the network.
Furthermore, properties are not protected by access rights, but can be read by any other com-
ponent, and they remain in memory as long as they are not explicitely removed. But these
restrictions could be eliminated in the future by introducing the notion of alease(where prop-
erties are deleted automatically if they are not used for a certain amount of time), as well as
assigning owners to the properties.

2.3.4 Generic Action Events instead of Pen Events

The previous version of the Active Component framework was very much focussed on iPaper-
related components. iPaper is unquestionably the most important part of the framework (iPa-
per contains three times as many classes as iServer itself),but the existing implementation
was not generic enough in terms of new application areas for Active Components. Most
components explicitely asked for aTimestampedLocation (a specific type of pen events)

CHAPTER 2. DESIGN 9

and aBufferedInputReader (for input devices such as a digital pen or a mouse) to perform
their tasks. We therefore introduced a generic classActionEvent, from which future events
should inherit. The generic action event allows the developer to design components that are
not directly related with iPaper but still want to make use ofaction events.

2.3.5 Multiple stubs running at the same time

Sometimes, Active Components need more time to perform their tasks than the user is willing
to wait. Instead of one single stub handling all action events, an idle stub from a stub pool
could be selected. The stub manager keeps a list of all ActiveComponent stubs of the same
type and takes care of the stub selection.

2.3.6 Simplified design process with authoring tools

In order to put a new Active Component into operation, it is not sufficient to just write a new
class. Instead, several files have to be coordinated properly. Above all, the Active Component
schema has to be defined and the bindings have to be entered into the global binding table.
It gets even worse if components are renamed or deleted, which can lead to unused files and
obsolete links.
Since the authoring tool is an essential part of this project, a comprehensive documentation
can be found in Chapter 4.

10 2.3. THE EXTENDED ACTIVE COMPONENT FRAMEWORK

3
Implementation

In Chapter 2 we have seen the new concepts of the extended Active Component framework. In
this chapter we are going to take a closer look at how they haveactually been implemented. A
selection of books and websites was used as primary Java programming references [9, 10, 11].

3.1 Package Structure

The following packages have been either added or extensively modified during the develop-
ment process:

1. org.ximtec.iserver.activecomponent

2. org.ximtec.iserver.activecomponent.schema

3. org.ximtec.iserver.activecomponent.event

4. org.ximtec.iserver.authoring.*

(1) contains abstract classes for Active Components and Active Component managers, as
well as concrete base classes for Active Component stubs/logics and their corresponding
managers. It also contains the identifier resolver and the binding manager. (2) contains the
schema for Active Components as well as three classes used inschemas: a method repre-
sentation, a property representation, and a type representation (for types like integer, string,
etc.), which are all described in the next section. (3) contains a generic base type for action
events, which replaces the old iPaper-specificPenEventand provides a more general approach
for event handling. Finally, (4) and all its subpackages contain classes of the authoring tool
described in Chapter 4, including all the GUI classes.

11

12 3.2. THE CLASSES

3.2 The Classes

Although the class hierarchy (Figure 3.1) did not change notably, the implementation of some
classes has been completely altered and will be explained indetail in the following sections.

ActiveComponent

ActiveComponent

Stub

ActiveComponent

Logic

< Custom Logics >

DefaultStub

< Custom Stubs >

Active Component

StubManager

Active Component

LogicManager

ActiveComponent

Manager

Client Server

ActiveComponent

Schema

ActiveComponent

Binding

iServer

iPaper

etc.

Figure 3.1: Class hierarchy

3.2.1 ActiveComponent

ActiveComponent is an abstract class providing basic functionality for Active Compo-
nents, such as accessing its own name, identifier, or parameters. The two private methods
setProperty andgetProperty are responsible for getting and setting the component’s prop-
erties dynamically. They are internally used to load and store the properties and do not have
to be called explicitely by the developer. The class also provides a simple timeout mecha-
nism which is used by the managers (see below) to unload a component if it takes longer than
expected to perform its actual task.
We implementd all important Active Component behavior directly in this abstract class.
This has the advantage that developers of new Active Components only need to inherit
from this base class in order to create a fully functionable Active Component, and almost
no additional code is required. There are only twoActiveComponent subclasses, namely
ActiveComponentLogic andActiveComponentStub:

3.2.2 ActiveComponentLogic

ActiveComponentLogic represents an Active Component on the server side. Only
ActiveComponentLogic objects have access to the iServer database (and hence can
read or write properties). The core method of anActiveComponentLogic is called
handleActionRequest and takes anHttpServletRequest as an argument. This method can
be overridden by subclasses in order to implement the server-side functionality of an Active
Component.

CHAPTER 3. IMPLEMENTATION 13

The logic also has two other functions,init andfinish, which are invoked right after a new
Active Component is initialized or before it is terminated,respectively.

3.2.3 ActiveComponentStub

ActiveComponentStub represents an Active Component on the client side. It can be used
if the client device needs to display information to the user, e.g. rendering a webpage or
providing audio feedback etc., or if other local computations have to be performed. Active
Component stubs are only created upon a request by the server. Therefore, the Active Com-
ponent logic has to send all its shared properties to the client. For this purpose, the properties
are transformed into an XML representation using JDOM [11].The stub reads the values
from this message and uses the methodsetProperty to initialize its fields accordingly.
The stub’s event handler,handleEvent, is more generic than the logic’s event handler. In
general, it is called exactly once (usually by the client application). It takes anActionEvent
argument, which can be extended to handle almost every eventtype imaginable. In the spe-
cific case of iPaper applications, the specialized subclassTimestampedLocationEvent con-
tains iPaper-specific event arguments such as aTimestampedLocation (essentially a page ID
and the coordinates selected by the user) and anBufferedInputDevice (e.g. the digital pen,
the mouse etc.).

3.2.4 ActiveComponentManager

In order to manage Active Components at runtime anActiveComponentManager is
used on the client as well as on the server side. These managers are respon-
sible for creating and maintaining Active Components and for managing their life-
cycle. The abstract classActiveComponentManager again has only two subclasses,
namely ActiveComponentLogicManager, which handles logic objects on the server, and
ActiveComponentStubManager, which handles stubs on the client. The former needs an
OM Instanceto create a logic object, the latter only the corresponding key-value-tuples of the
logic’s public properties.
The managers are also part of the remote method invocation mechanism. As described earlier,
they delegate method invocations from Active Components toother Active Components, or
to their counterparts on the client or the server side respectively. Therefore, managers provide
two different versions of the method invocation routine:

3.2.5 ActiveComponentBinding

The framework does not know which logic actually belongs to which stub. In fact, any logic
could be used with different stubs and vice versa. Thus, eachstub has to be explicitely
bound to a specific logic by the developer and every binding istagged with a unique identifier
(which will be referred to as theActive Component identifier). Using a globally available list
that contains all the bindings for a specific application, the ActiveComponentResolver can
then map any given identifier to the corresponding logic or stub class name. Bindings are
stored in a simple XML file format. In order to edit the list of bindings efficiently, theActive
Component Binding Editor(see Section 4.3.1) should be used.

14 3.2. THE CLASSES

invokeStubMethod(...) Invokes a method on an Active Component stub, i.e.
on the client side. If the call is made by another
Active Component stub, it will directly be redirected
to the corresponding object. If the call is made by
an Active Component logic however, the manager
will send the request to its counterpart located on
the server, which will then take care of the method
call. This remote request (as well as the method’s
return value) will be transmitted in a simple XML
representation (see Appendix B.3) via HTTP.

invokeLogicMethod(...) Works exactly likeinvokeStubMethod(...), but
stub/logic and client/server are interchanged.

3.2.6 ActiveComponentSchema

ActiveComponentSchema is a new class of the Active Component framework. Schemas de-
scribe the interface of Active Components, i.e. their public properties, methods and the re-
spective types of those entities. When logics send their XMLrepresentation to the client, only
the properties defined in the schema are transmitted, independently of their actual modifier.
This enables the developer to precisely define which properties are to be shared between stub
und logic, and which ones are only used locally.
The different entities (properties and methods) are storedin a straightforward way: Both
properties and methods are stored in two separate collections:
Each property is represented as a tuplef = (id, t, v, r, w), where

id field identifier (java.lang.String)
t type (org.ximtec.iserver.activecomponent.schema.Type)
v standard value, if no value is specified in the document definition file
r readable: property can be read by a public getter method
w modifiable: property can be set by a public setter method

Each method is represented as a tuplem = (id, t, a), where

id method identifier (java.lang.String)
t return type (org.ximtec.iserver.activecomponent.schema.Type)
a method arguments

Finally, arguments are represented as a list of tuplesa = (id, t), where again,id is the
identifier andt the type of the argument. Strictly speaking,id is not required to perform
a remote method invocation, but the method identifier is usedby the Binding Editor. The
detailed XML Schema of the schema file format is given in Listing B.2.

3.2.7 Schema Types

Together with schemas, special data types have been introduced as well. The goal was to
strictly separate types used in schemas from native Java types in order to allow interoper-

CHAPTER 3. IMPLEMENTATION 15

ability with other programming languages. Table 3.1 shows all types currently defined in the
Type class.

Schema Type Java Type Contents
ac:string java.lang.String string value
ac:integer int integer number
ac:double double floating point number
ac:boolean boolean boolean value
ac:date java.util.Date date and time
ac:object java.lang.Object any object or binary data

Table 3.1: Types defined inorg.ximtec.iserver.activecomponent.schema.Type

3.3 Improvements and Extensions

3.3.1 Internal Property Handling

An Active Component’s properties are stored on the server aspairs of strings. In the existing
framework, it was necessary to parse them manually. This wascumbersome and error prone.
The new framework handles the parsing of properties automatically. Developers do not have
to care about type conversion anymore—instead, the properties can directly be accessed like
normal fields.
Property parsing is done during the instantiation of an Active Component. The properties are
available as soon as the Active Component is loaded by one of the Active Component man-
agers. Depending on whether an Active Component logic or a stub is initiated, the properties
are read from an OMS resource on the server or parsed from an XML representation of name-
value-pairs sent by the server respectively. In both cases,the Active Component itself will
be looking for an appropriate class field definition using Java reflection. If a field is indeed
declared, its appropriate value will be parsed. In order to determine the corresponding type
of a property, the Active Component schema (which has already been loaded at this point) is
consulted.

3.3.2 Static Logics

As explained in Section 2.3.2, static logics can be very handy. To make a logic static, we just
need to prevent a component from being destroyed after the action event.
The old framework provides a methodsetDone (a member of theActiveComponentclass) to
mark an Active Component as finished and to clean up internal data structures. We overloaded
this method in order to provide more flexibility.

public void isDone(boolean keepInMemory) { ... }

If this method is invoked with the argumenttrue, the component will not be destroyed, but
kept in memory for later use.

16 3.4. THE DEMO APPLICATION

3.3.3 Multiple Stubs

The stub manager can distinguish between stubs with different types by comparing their
identifiers, but in order to make it capable of distinguishing between different stubs of the
same type, we need to uniquely identify every single stub. Inour implementation, this is
done with a simple integer value, which is incremented with every new stub. However, this is
not the best solution, mainly because stubs can be destroyedat any time, and the index may
not be valid any more. A better solution would involve a globally unique identifier (GUID)
associated with every active stub. This identifier is created when a stub is instantiated, and
the user can query the manager for a specific stub by passing its unique identifier.

3.3.4 Generic Action Events

As stated in Section 2.2.1, Active Components have been connected too tightly with the
iPaper framework. As it is shown in Listing 3.1, the method name suggests a direct connection
to pen events (which, of course, had actually been the case),and the method arguments were
iPaper-specific. It simply was not possible to call the eventhandler from a different device
other than a digital pen.

Listing 3.1: Existing signature of the pen event handler
public void handlePenEvent(TimestampedLocation location,

BufferedInputDevice reader);

The new method signature is significantly different, but it is still working in exactly the
same way. The method name was changed, and the arguments weremoved to a new class
TimestampedActionEvent located inorg.ximtec.iserver.activecomponent.event. It
is a subclass of the more general typeActionEvent located in org.ximtec.iserver.

activecomponent.event, which now serves as a base class for all future action eventswhich
require more specific parameters.

Listing 3.2: New signature of the general event handler
public void handleEvent(ActionEvent e);

3.4 The Demo Application

Figure 3.2: The demo application

To demonstrate the new capabilities of the Active Componentframework, we consider a
simpleCalculator application shown in Figure 3.2. It consists of only four different Active
Components which are described in detail in Table 3.2.

CHAPTER 3. IMPLEMENTATION 17

Active Component Description Attributes

CALC NUMBERS Two-dimensional slider control representing
the digits 0 to 9 (two cells are not used).

default

CALC OPERATIONS Two-dimensional slider control representing
four basic arithmetic operations.

static

CALC CLEAR Default button which will reset the calculator
control.

default

LOGGER Logs all calculations. If the user clicks on the
button “Log” (not present in the screenshot),
the log will be read out.

static, hidden

Table 3.2: The demo application components

Clicking on a number will generate a remote method invocation, and the selected number
will be sent to the logic of the CALCOPERATIONS control. The CALCOPERATIONS
control waits until an operation is complete (i.e. the user has selected a number fikkiwed by
an operation and terminated by a second number). The CALCOPERATIONS logic invokes
a remote method by sending the result to the TTS engine on the client side. At the same time,
the operation will be appended to the server-side log.
This application demonstrates the Remote Method Invocation in both directions, as well as
static logics and static properties.

3.5 Conclusion

It is virtually impossible to describe all modifications in detail, because often, only a few lines
of code were modified. As stated at the beginning, we wanted topreserve the existing func-
tionality, and add some new features. Nevertheless, even well-established base classes such
as theActiveComponent itself underwent some changes, and although this did not affect the
classes’ general behavior, it certainly facilitated theiruse. Let us look at the source code of a
simple Active Component to see the differences between the existing and the new framework
more clearly.
We do not comment this example (except for comments in the source code), because the
differences between the two versions are obvious, and a detailed description has already been
given in this chapter. Nevertheless, it sums up most of our modifications and shows how these
features are actually used in a real Active Component.

3.5.1 Source Code Comparison

Listing 3.3: An Active Component stub written in the existing framework
package org.ximtec.ipaper.newframework.stub;

import /* ... */

18 3.5. CONCLUSION

public class SampleStub extends DefaultStub {

private static final String ADVICE = "Custom User Advice.";

public String getUserAdvice() {
// Return user advice
return ADVICE;

}

public void init(String servletPath, TimestampedLocation location,
BufferedReader reader) {

// Initialize properties...
}

public void handlePenEvent(TimestampedLocation loc,
BufferedReader reader) {

// Note the inflexible, iPaper-specifc method signature

// Properties are stored in a hash map (as pairs of strings)
Rectangle rect = new Rectangle(

(double)getParameter("x"),
(double)getParameter("y"),
(double)getParameter("width"),
(double)getParameter("height"));

doSomething(rect); // ...

// Terminate this stub
setDone();

}

public void finish() {
// Clean up and perform last-minute actions
// (restricted to the server side)

}

Listing 3.4: An Active Component stub written in the new framework
package org.ximtec.ipaper.newframework.stub;

import /* ... */

public class SampleStub extends DefaultStub {

private static final String ADVICE = "Custom User Advice.";

// The component’s properties
protected double x, y, width, height;

public String getUserAdvice() {
// Return user advice
return ADVICE;

}

public void handleEvent(ActionEvent e) {
super.handleEvent(e);

CHAPTER 3. IMPLEMENTATION 19

// Handle the ActionEvent
Rectangle rect = new Rectangle(x, y, width, height);
doSomething(rect); // ...

// Terminate this stub
setDone();

}

public void finish() {
// Clean up and perform last-minute actions,
// e.g. send some text to the TTS engine (on the client)

// Prepare the method call argument
Property[] args = new Property[] {

new Property("textToSpeech", Type.STRING, ADVICE)
};

// Invoke the remote method using this argument
ActiveComponentStubManager.getInstance().

invokeStubMethod("TTSEngineStub", "speak", args);
}

}

20 3.5. CONCLUSION

4
Authoring

In the early stage of this project, the authoring application consisted of several independent
tools. Very soon it became clear that it was actually more sensible to integrate the tools into a
single editor—not only to speed up the development process,but also in anticipation of inte-
grating this application into the existing authoring tool for the Active Component framework.
The authoring tool developed during this semester project is merely the beginning of a much
more comprehensive authoring system. We will discuss this in detail in Chapter 5.1.

4.1 Documentation

In this section, we are going to explain some basic programming concepts used in the Active
Component framework. This should help future developers tobecome acquainted with the
programming practices used in the framework. We will also explain how the authoring tool
can be integrated into other applications.

4.1.1 A framework of singletons

The Active Component framework is designed in a way that it issensible to only have exactly
one instance of theActiveComponentStubManager on the client side and, correspondingly,
exactly one instance of theActivComponentLogicManager on the server side. Therefore,
both classes are provided as singleton objects, and have to be accessed as follows:

// Import the ActiveComponent classes
import org.ximtec.iserver.activecomponent.ActiveComponentStubManager;

// getInstance() will return a manager singleton
ActiveComponentStubManager.getInstance(). ...

21

22 4.1. DOCUMENTATION

4.1.2 Active Components are managed

Active Components are managed by their corresponding manager. This means that Active
Components should be neither accessed directly, nor instantiated manually. Instead, the
mechanisms described in Section 2.3 should be used (i.e. remote method invocation or static
properties).
If a reference to an Active Component object is really required,getActiveComponent(...)
can be called, which will return exactly this—assuming a component with the given identifier
is currently running. Otherwise, it will returnnull.

4.1.3 Location of Schemas and Bindings

Schema file names are composed of the Active Component’s fullidentifier, followed by the
file extension “.acschema”, and the files are usually stored in a folder namedschemas, lo-
cated in theresourcesdirectory of the client application, orTomcatrespectively. Bindings
are always stored in a file named “ActiveComponents.xml” in the aforementionedresources
directory.
However, the current locations might not be appropriate if the framework is executed on
systems with different configurations, and although this isnot the case at the moment, the
user should at least be allowed to adapt these directories infuture versions of the framework.
Actually, this applies to all configuration and definition files. A better file management could
be introduced together with the suggestions mentioned in Section 5.1.5.

4.1.4 Running the Authoring Tool

Binding Editor

The binding editor can be started either by executingorg.ximtec.iserver.authoring.

Authoring with the command line argumentbinding edit, or by direct instantiation as
shown below:

import org.ximtec.iserver.authoring.gui.BindingListEditor;

(new BindingListEditor()).setVisible(true);

Schema Editor

The schema editor can be started similarly to the binding editor, but three arguments are
required to instantiate the object successfully:

import org.ximtec.iserver.authoring.gui.SchemaEditor;

(new SchemaEditor(arg0, arg1, arg2)).setVisible(true);

Argumentarg0 contains the schema file name (with relative or absolute path) where the
Active Component schema is stored,arg1 contains the corresponding binding data (which is
not directly available in the schema file), andarg2 contains the list of all Active Component
bindings (as it is used for instance in the binding editor). The third argument could actually
be omitted, but at the moment, it is needed by the binding editor as a “callback object” in
order to update its internal list entries. This could certainly be simplified in the future.

CHAPTER 4. AUTHORING 23

4.1.5 Visual Editor

To facilitate the development of a graphical user interfacein Eclipse, theEclipse Visual Editor
was used to implement windows and dialog boxes based on theSwinglibrary. Although the
Visual Editor tends to create a lot of code even for small windows, it has proven to be a
valuable tool for creating the user interface of the authoring tool. However, the source code
is very likely to be refactored during the integration of theGUI into the newiServersystem
to make it more concise and independent of any third-party visual editor.

Figure 4.1: The Eclipse Visual Editor

24 4.2. DESIGN OF THE AUTHORING TOOL

4.2 Design of the Authoring Tool

The authoring tool developed during this semester project covers two aspects of the design of
new Active Components. On the one hand, Active Component bindings can be managed and
on the other hand Active Component schemas can be defined without writing a single line of
code.

4.2.1 The Binding Editor

The main window class of the binding editor is calledBindingListEditorand it is located in
the following package:

org.ximtec.iserver.authoring.gui

The binding editor does not provide any command line arguments. All the settings are stored
in the local fileauthoring.properties. Currently, only three values are used by the binding
editor:

Property Description
localDirectory local base directory of the client application
remoteDirectory remote base directory of the server application
bindingDirectory base directory where the list of bindings is located

The former two directories are used to store the local and theremote copy of the schema file
respectively. The binding directory defines the location where the binding list is placed. The
default values will work fine if both client and server run on the same machine, but they need
to be adjusted if the program is executed in a “real” distributed environment.
If the property file does not exist (e.g. if the editor is executed for the first time), a dialog
will be displayed and the user is asked to confirm the default settings. This dialog is also
accessible from the binding editor’s menu for later changes.
The binding editor loads the list of Active Component bindings from an XML file called
ActiveComponents.xml (for the XML schema see Listing B.1). The parsed entries are stored
in ActiveComponentsDocument, which extends theAbstractTableModelclass. This makes it
very easy to add, remove and edit entries, to sort them and to display the data in a standard
JTablecomponent.
The binding information for every Active Component can be entered using theBindingEditor
class, which provides three simple text fields to specify thebinding attributes (identifier,
stub, logic). All text fields are checked against some regular expressions to prevent the user
from entering invalid data (e.g. all values should start with a letter and must not contain
spaces). A simplified auto-completion looks for similar package names as the user is typing
and automatically inserts the appropriate text. It is also possible to directly select an existing
class file, from which the correct package and class name is extracted by reflection. At the
moment, this feature is rarely used, because the class files are usually generatedafter the
binding entry. However, this could change in the future (seeSection 5.1.5).

CHAPTER 4. AUTHORING 25

4.2.2 The Schema Editor

The schema editor could actually be executed as a stand-alone application, but because the
schemas are dependent on the binding information and vice versa, is has to be instantiated
with the following three parameters:

Parameter Description
String complete path and file name of the schema file
ActiveComponentBinding the corresponding bindingb = (id, stub, logic)
ActiveComponentsDocumentthe complete binding list

The schema editor displays the interface of an Active Component, consisting of public prop-
erties and methods. Two additional dialogs are used to definethem. Like the binding informa-
tion, an Active Component schema is also stored in an XML file (one per Active Component,
for the XML schema see Listing B.2). However, during runtime, the schema is represented by
the classActiveComponentSchema. This class is also responsible for generating Java source
code (getStubJavaCode() andgetLogicJavaCode()).

26 4.3. AUTHORING TOOL MANUAL

4.3 Authoring Tool Manual

This section explains how the authoring tool is used. Although the interface is straightfor-
ward, some of the input fields need some further explanation.

4.3.1 Maintaining Bindings

In order to start theActive Component Binding Editor, the classAuthoring from the package
org.ximtec.iserver.authoring has to be executed with the argumentbinding edit. The
Binding Editor is loaded and a list of all available bindingsis displayed.

Figure 4.2: The Active Component Binding Editor

In case no components have been defined yet, the list will be empty. New entries can be
created at any time by simply clicking the ADD ENTRY button in the toolbar or selecting
ADD ENTRY from the EDIT menu.
In the following window, three different properties can be defined. Make sure you enter
framework-compliant values (for details see Table 4.1).
Note that only alphanumeric characters are allowed and thatall values must start with an
alphabetic character. Package paths can contain dots, and the identifier may contain one or
more underscores. The input is automatically checked against these rules.
The Binding Editor helps in defining new bindings even quicker. As soon as you start typing,
the editor looks for similar entries in the table and suggests a matching value using autocom-
pletion. If you do not know the exact package path or name of the new component, you can
browse for the corresponding class file—the rest is done by the editor. This feature assumes
an existing (and compiled) component class though, which presumably will not be at hand,

CHAPTER 4. AUTHORING 27

Figure 4.3: A binding is edited

value description

identifier a unique identifier for the component, usually composed of the package path
of your application’s components and a proper name (preferably in uppercase),
e.g.org.ximtec.ipaper.myapplication.MY COMPONENT

stub the full name of the stub class name, including its absolute package path,
e.g.org.ximtec.ipaper.myapplication.stub.MyStub

logic the full name of the logic class name, including its absolutepackage path,
e.g.org.ximtec.ipaper.myapplication.logic.MyLogic

Table 4.1: Naming conventions for Active Component bindings

28 4.3. AUTHORING TOOL MANUAL

since it is the purpose of the Schema Editor to define components after their binding entry
has been entered.
Note that some of the list entries may be displayed in red. This means that for this particular
binding, no schema has been specified yet.

4.3.2 Editing Schemas

If you want to define or modify the schema of an Active Component, double-click on the
corresponding binding entry, or select EDIT SCHEMA from the EDIT menu. The Schema
Editor will be opened.

Figure 4.4: The Active Component Schema Editor

Beside attributes like identifier, stub and logic, the Schema Editor allows you to define prop-
erties and methods of an Active Component. The interface is straightforward, and you should
be able to define your first Active Component schema with ease.
Remember that you only need to define properties which have tobe available on both sides
(logic and stub). Private properties that are only used locally can be declared directly in the
generated class files.
If the schema definition is complete, you can generate Java class stubs for both the Active
Component logic and the Active Component stub. Select CREATE JAVA CLASS STUBS from
the FILE menu and select a folder where you want the class files to be stored. The following
example shows two very simple class files generated by the schema editor.

CHAPTER 4. AUTHORING 29

Figure 4.5: Define properties and methods

package org.ximtec.ipaper.activecomponent.stub;
import /* ... */

public class SampleStub extends DefaultStub {

private static final String ADVICE = "This is a sample stub!";

protected int counter;
protected boolean paused;

public SampleStub(ActiveComponent resource) {
super(resource);

}

public String getUserAdvice() {
return ADVICE;

}
}

package org.ximtec.ipaper.activecomponent.logic;
import /* ... */

public class SampleLogic extends ActiveComponentLogic {

private static final String ADVICE = "This is a sample logic!";

protected int counter;
protected boolean paused;

public int getCounter() {
return counter;

}

public SampleStub(ActiveComponent resource) {
super(resource);

}

public String getUserAdvice() {
return ADVICE;

}
}

30 4.3. AUTHORING TOOL MANUAL

5
Conclusion and

Future Work

In this chapter, we will discuss some aspects of the Active Component framework which
could be improved in other semester projects, i.e. we will show where the framework could
be extended, or where it should be redesigned.

5.1 Future Work

5.1.1 Eliminating Binding and Schema Duplication

As shown in Figure 2.5, the binding table which is needed to bind stubs and logics to Active
Components as well as all the different schema definition files have to be deployed at both
the client and the server side. Synchronization is crutial,because the absence of currect
and up-to-date binding information or schema definition will render an Active Component
inoperative.
At the moment, this concern may not appear to be justified, because Active Components are
usually designed once and remain unchanged thereafter. Butthe system could be extended to
allow Active Components to be loaded or bindings to be changed dynamically.

5.1.2 Replacing Schema Types

Active Component schemas make use of a specialType class (see Section 3.2.6), which are
used to simplify the conversion from schema types to the XML format and vice versa. They
are also used in the remote method invocation mechanism for the same reason, but although
the transformation from and to XML is straightforward, the remote method call itself has
become unnecessarily complicated (method arguments have to be converted to Active Com-
ponent schema types). This issue should be tackled as soon aspossible in order to facilitate
the RMI mechanism, probably using serialization.

31

32 5.1. FUTURE WORK

5.1.3 Documentation and Developer Manual

Although the source code of the Active Component framework is well-commented, there is
no reference material whatsoever describing how the systemhas to be set up or how Ac-
tive Components are actually created. As the development onthe authoring tool progresses,
a documentation ought to be compiled, serving as a “manual” for the Active Component
framework.

5.1.4 Bits and Pieces

In order to set up an Active Component, several things need tobe done:

� Define the Active Component’s interface and create class stubs
(using our authoring tool)

� Add a new entry to the binding list on the local and the remote host
(using our authoring tool as well)

� Set up an interactive iServer document (e.g. an iPaper sheet) and create a link to the
new Active Component

� Compile and re-run the system

Some of these steps are already taken care of by our authoringtool, others still need to be
done manually. Furthermore, a mechanism similar to Java’s dynamic class loading could be
introduced to the Active Components framework as well, in order to dynamically integrate
new Active Components at runtime.

5.1.5 Integrated Authoring Tool and Eclipse Integration

The process of creating Active Components involves a lot of code-writing. For small com-
ponents, constant switching between the development environment and the authoring tool for
Active Components may be tolerable to a certain extent. But especially when it comes to
reverse engineering (i.e. if the users changes the Active Component’s interface by directly
modifying the source code), the external authoring tool is not appropriate and slows down the
development process drastically. Actually, reverse engineering has not yet been taken into
account at all.
We propose that the authoring tool should be directly integrated into the existing Eclipse IDE.
The aforementioned conversion between Active Component schemas and the corresponding
Java source code (and vice versa) could then be done automatically by the IDE, and we could
take advantage of its refactoring mechanisms.

A
Appendix A

Figure A.1: iServer and iPaper Object Model

33

34

B
Appendix B

Listing B.1: XML Schema of the Binding File Format
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.globis.ethz.ch/iserver">
<xsd:element name="activeComponents">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="activeComponent" type="bindingEntryType"

minOccurs="0" maxOccurs="unbounded"/>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:complexType name="bindingEntryType">
<xsd:sequence>
<xsd:element name="identifier" type="xsd:string"/>
<xsd:element name="stub" type="xsd:string"/>
<xsd:element name="logic" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Listing B.2: XML Schema of the Schema File Format
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.globis.ethz.ch/iserver">
<xsd:element name="activeComponentSchema">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="identifier" type="xsd:string"/>
<xsd:element name="stubPackage" type="xsd:string"/>
<xsd:element name="logicPackage" type="xsd:string"/>
<xsd:element name="superStub" type="xsd:string"/>

35

36

<xsd:element name="superLogic" type="xsd:string"/>
<xsd:element name="properties">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="property" type="propertyType"

minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name="methods">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="method" type="methodType"

minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:complexType name="propertyType">
<xsd:sequence>
<xsd:element name="identifier" type="xsd:string"/>
<xsd:element name="type" type="xsd:string"/>
<xsd:element name="value" type="xsd:string"/>
<xsd:element name="readable" type="xsd:boolean"/>
<xsd:element name="modifiable" type="xsd:boolean"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="methodType">
<xsd:sequence>
<xsd:element name="identifier" type="xsd:string"/>
<xsd:element name="returnType" type="xsd:string"/>
<xsd:element name="arguments">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="argument" type="propertyType"

minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Listing B.3: XML Schema of a Remote Method Invocation
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.globis.ethz.ch/iserver">
<xsd:element name="activeComponentSchema">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="className" type="xsd:string"/>
<xsd:element name="methodName" type="xsd:string"/>
<xsd:element name="arguments">

APPENDIX B. APPENDIX B 37

<xsd:complexType>
<xsd:sequence>
<xsd:element name="argument" type="argumentType"

minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:complexType name="argumentType">
<xsd:sequence>
<xsd:element name="identifier" type="xsd:string"/>
<xsd:element name="type" type="xsd:string"/>
<xsd:element name="value" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

38

Acknowledgements

I would like to express my sincere thanks to my supervisor, Beat Signer, who not only let me
take part in the PaperWorks project, but also supported me patiently during this thesis and
provided a lot of valuable information. Since this work is based on the Active Component
framework designed and developed by Philipp L. Bolliger, I would like to thank him for the
awsome work he has done during his thesis. I am also grateful for the great feedback that I
was given by some members of the GlobIS group after my projectpresentation, which gave
me an idea about where the project could be heading in the future. Finally, I would like to
thank Prof. Moira C. Norrie for letting me participate in oneof her group’s projects.

39

Bibliography

[1] Active Components for iServer: In Consideration of Paper-Based Authoring
Philipp L. Bolliger (April 2005)

[2] Fundamental Concepts for Interactive Paper and Cross-Media Information Spaces
Beat Signer (2005)
Dissertation ETH No. 16218, Zurich, Switzerland

[3] Paper Augmented Digital Documents
François Guimbretière (July 2003)
Human-Computer Interaction Lab, University of Maryland

[4] DCOM Architecture
Markus Horstmann, Mary Kirtland (July 1997)

[5] The Distributed Component Object Model
The Dalmatian Group, Inc.
www.dalmatian.com/com dcom.htm

[6] Wikipedia
http://en.wikipedia.org/wiki/CORBA

http://en.wikipedia.org/wiki/DCOM

[7] A comparison of two competing technologies
David Reilly (2000)
www.javacoffeebreak.com/articles/rmi corba

[8] Java RMI, CORBA or COM?
Prithvi Rao (November 1998)
www.usenix.org/publications/java/usingjava13.html

[9] The Java Cookbook
Ian Darwin (June 2001, O’Reilly Press)

[10] The Java Developers Almanac 1.4
Patrick Chan (March 2002)

[11] Easy Java/XML integration with JDOM
Jason Hunter, Brett McLaughlin (May 2000)
http://www.javaworld.com/javaworld/jw-05-2000/jw-0518-jdom.html

41

	Contents
	1 Introduction
	1.1 iPaper and iServer
	1.2 Active Components
	1.3 Motivation and Goal
	1.3.1 Active Component Intercommunication
	1.3.2 Active Component Properties
	1.3.3 Authoring Support

	2 Design
	2.1 Existing Concepts of Distributed Computing
	2.1.1 Java RMI
	2.1.2 CORBA
	2.1.3 Microsoft DCOM

	2.2 The Existing Active Component Framework
	2.2.1 Limitations

	2.3 The Extended Active Component Framework
	2.3.1 Remote Method Invocation
	2.3.2 Persistent logics with a static state
	2.3.3 Global properties
	2.3.4 Generic Action Events instead of Pen Events
	2.3.5 Multiple stubs running at the same time
	2.3.6 Simplified design process with authoring tools

	3 Implementation
	3.1 Package Structure
	3.2 The Classes
	3.2.1 ActiveComponent
	3.2.2 ActiveComponentLogic
	3.2.3 ActiveComponentStub
	3.2.4 ActiveComponentManager
	3.2.5 ActiveComponentBinding
	3.2.6 ActiveComponentSchema
	3.2.7 Schema Types

	3.3 Improvements and Extensions
	3.3.1 Internal Property Handling
	3.3.2 Static Logics
	3.3.3 Multiple Stubs
	3.3.4 Generic Action Events

	3.4 The Demo Application
	3.5 Conclusion
	3.5.1 Source Code Comparison

	4 Authoring
	4.1 Documentation
	4.1.1 A framework of singletons
	4.1.2 Active Components are managed
	4.1.3 Location of Schemas and Bindings
	4.1.4 Running the Authoring Tool
	4.1.5 Visual Editor

	4.2 Design of the Authoring Tool
	4.2.1 The Binding Editor
	4.2.2 The Schema Editor

	4.3 Authoring Tool Manual
	4.3.1 Maintaining Bindings
	4.3.2 Editing Schemas

	5 Conclusion andFuture Work
	5.1 Future Work
	5.1.1 Eliminating Binding and Schema Duplication
	5.1.2 Replacing Schema Types
	5.1.3 Documentation and Developer Manual
	5.1.4 Bits and Pieces
	5.1.5 Integrated Authoring Tool and Eclipse Integration

	A Appendix A
	B Appendix B

