Active Components

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Semester Thesis

Samuel Willimann
<wsamuel@student.ethz.ch>

Prof. Dr. Moira C. Norrie
Dr. Beat Signer

Global Information Systems Group
Institute for Information Systems
Department of Computer Science

17th July 2006

Copyright (© Winter Semester 2005/2006 Global Information Systems Group.

Abstract

The Integration ServeliServer) architecture is an extensible cross-media lever plat-
form enabling links between different types of media [2].h#s been applied within the
PaperWorksaindPaper++ projects to define links between paper and digital contetivioce
versa. The philosophy of the iServer architecture is to idWbasic link functionality (in-
cluding user management etc.) which then can be extendeghpms different kinds of new
physical or digital content.

More recently, the concept &ctive Componentbas been introduced to support not only
links to different media types (e.g. paper, movies, eta,abso to integrate small pieces of
program logic. However, it has not yet been possible to defieestructure of these Active
Components (such as properties, methods, etc.) in an etbfshion, and the authoring of
Active Components has been limited to raw XML input only.

As part of this semester project, a visual authoring toollieen created, which is supposed
to simplify the design and development of Active Componédaytgproviding a simple user
interface for schema specification and class binding diefirst

Another effort went into enhancing the existing framewdtktp allow Active Components
to communicate with each other, essentially through a vienple form of remote method
invocation, and to investigate and eliminate other lintias of the framework.

Contents

Introduction 1
11 iPaperandiServer 1
1.2 Active Components 2
1.3 Motivationand Goal 2
1.3.1 Active Component Intercommunication L. 2
1.3.2 Active Component Properties 2
13.3 AuthoringSupport 2
Design 3
2.1 Existing Concepts of Distributed Computing 3
211 JavaRMI .. o 3
212 CORBA . . . 4
213 Microsoft DCOM 5
2.2 The Existing Active Component Framework 6
221 Limitations o 6
2.3 The Extended Active Component Framework 7
231 Remote Method Invocation 7
23.2 Persistentlogics with astaticstate 0. 8
2.3.3 Global properties 8
23.4 Generic Action Events instead of PenEvents 8
2.3.5 Multiple stubs running atthe sametime 9
2.3.6 Simplified design process with authoringtools 9
Implementation 1
3.1 Package Structure 1n
3.2 TheClasses 12
3.21 ActiveComponent oL 12
3.2.2 ActiveComponentlogic. L 12
3.23 ActiveComponentStub oo 13
3.24 ActiveComponentManager 13
3.2.5 ActiveComponentBinding L oL 13
3.2.6 ActiveComponentSchema 14
3.27 SchemaTypes 14
3.3 Improvementsand Extensions oL 15
3.31 Internal PropertyHandling L. 15
3.3.2 Staticlogics 15
333 MultipleStubso 16

vi CONTENTS
3.3.4 GenericActionkEvents 16

3.4 TheDemo Application 16

3.5 Conclusion 17
3.5.1 Source Code Comparison 17

4 Authoring 21
4.1 Documentation 21
411 Aframework of singletons. oL 21

4.2 Active Componentsare managed 22

41.3 Llocation of Schemas and Bindings 22

41.4 Runningthe AuthoringTool 22

415 VisualEditor 23

4.2 Designofthe AuthoringTool, 24
421 TheBindingEditor 24

4.22 TheSchemakditor, 25

4.3 AuthoringTool Manual 26
431 Maintaining Bindings o oo 26

432 EditingSchemas. oo 28

5 Conclusion andFuture Work 31
51 FutureWorko 31
511 Eliminating Binding and Schema Duplication 31

51.2 Replacing SchemaTypes 31

5.1.3 Documentation and Developer Manual 32

514 BitsandPieces 32

5.1.5 Integrated Authoring Tool and Eclipse Integration 32

A Appendix A 33
B Appendix B 35

Introduction

1.1 iPaper and iServer

As part of the sixth European framework prograPaperWorks is a collaboration of differ-
ent European partners designated to develop and assesatinaa@oncepts and systems to
enrich the use of paper in everyday settings. Being one akthartners, th&lobal Infor-
mation Systems groy®loblSY at ETH Zurich has been developing the server technologies
responsible for managing the digital media and the linke/beh paper and digital resources.
The framework is based on a client-server architecture.egigppattern is printed on sheets
of paper, encoding physical coordinates and a unique daaunuenber. This information is
read by a digital pen, which sends the data to a transformmaponent on the client device.
In most cases an HTTP request is then generated and tragsratthe link management
server (iServer) that processes the request and returirsfoneation linked to the specified
document area. ThExtensible Information Management Architect¥MA) passes the
response back to the client device in the appropriate format

= ——HTTP Request—»
//// <——Res ° hing
Encoded ponse o
Position —_—
Augmented Input Decoder XIMA Server iServer with
Document and Output Device iPaper Plug-in

Figure 1.1: Functional overview of interactive paper

Twww.paper-works.org
Zwww.globis.ethz.ch

2 1.2. ACTIVE COMPONENTS

1.2 Active Components

In order to understand the motivation of this work, it is resagy to know the basic concept of
Active ComponentdDocument areas as described above have usually been tmkédple
media contents (resources) such as web pages or movieTfipaise of resources was rather
limited, because upon every location event from the pery,amé resource could be triggered.
The introduction of a new resource type, thetive Componenthen allowed adding program
logic and performing small tasks, such as capturing nossguext-to-speech functionality,
or sending OLE commands to external applications.

1.3 Motivation and Goal

Despite this great advantage, Active Components have hdgacted to some restrictions
however. The goal of this thesis is to investigate and eklit@rsome of these restrictions and
to support the user in designing custom Active Componentg reasily. Therefore, a simple
authoring tool is introduced in Chapter 4.

1.3.1 Active Component Intercommunication

Sometimes it would be an advantage if Active Componentsdcexthange messages or if
one component could use another component’s functiondlitg idea of Active Component
intercommunication is described in Section 2.3.1. In otdetemonstrate the benefit of Ac-
tive Component intercommunication, a small example appba is presented in Section 3.4.

1.3.2 Active Component Properties

In the existing framework, properties of Active Componeate represented internally as
pairs of stringsp = (id, v), whereid denotes the property’s identifier andits value. In
order to simplify the use of other property types, i.e. ietay booleans or even objects,
the mechanism of storing and retrieving data from or to thialgse has been adapted as
described in Section 3.3.1.

1.3.3 Authoring Support

The Active Component framework has become quite a complstesy Managing all the
different files and settings turns out to be cumbersome atins a first step to reduce this
complexity, our authoring tool supports the user in sevaegls:

» Definition of Active Components (schemas), i.e. their puplioperties and methods

» Definition of Active Component bindings, i.e. provide a Jaspresentation (stub and
logic) for a given identifier

Design

To discuss the decisions made in the design of the new Actoragonent framework, we
first look at some existing infrastructures coping with ilistted systems. We are then going
to investigate which concepts are really used in the Activenfonent framework and where
its design diverts from existing solutions.

In the following three sections, a quick description of samhéhe most popular solutions of
distributed computing frameworks, Java RMI, CORBA, and idsoft DCOM, is given.

2.1 Existing Concepts of Distributed Computing

2.1.1 Java RMI

Remote Method InvocatigiRMI) [7, 8] is a Java application programming interface ffer-
forming remote procedure callRPC). It is not a new concept though, because even C pro-
grammers have been using RPC semantics to execute a fulctianremote host. What
makes RMI different is that in Java it is necessary to packengle data and methods and ship
both across the network (RPC works on data structures phynand the recipient must also
be able to interpret the object after receiving it.

In order to accomplish this, client and server must both ktimexact interface of the remote
object, which, of course, has to be the same on both sidesceiianclient can only call a
method of a remote objecadapto) which implements the same interface as its correspond-
ing stub proxy) on the client side.

The correct methods are looked up and bound by the RMI Reggistrsketch of the RMI
mechanism is depicted in Figure 2.1. RMI allows entire disj¢o be passed and returned
as parameters, unlike many RPC-based mechanisms whicherggguameters to be either
primitive data types, or structures composed of primitiagadtypes. That means that any
Java object can be passed as a parameter—even new objeds wlhss has never been
encountered before by the remote virtual machine.

4 2.1. EXISTING CONCEPTS OF DISTRIBUTED COMPUTING

[Interface J

Iy Iy

(1\ ()

Client Server Class
Application (object implementation)
\\§ J |\ J
4)\ 4)\
RMI Stub RMI Skeleton
("proxy") ("object adapter")
|\ J

lookup()

Figure 2.1: Java RMI

However, RMI is strongly tied to the Java language, and amerability between Java pro-
grams and other legacy systems often involves developirappropriate interface.

2.1.2 CORBA

TheCommon Object Request Broker ArchitecttC®RBA) [6, 7, 8] defines APIs, communi-
cation protocols, and object/service information modelsrtable heterogeneous applications
written in various languages running on various platforménteroperate. CORBA there-
fore provides platform and location transparency for sttpivell-defined objects across a
distributed computing platform.

'd N\ 'd N\
IDL " » IDL
Stubs Skeleton
(. J (. J
Y m v
()\ ()\
Client . ORB Server .
Implementation 5 { Implementation
|\ J |\ J

IIOP

Object

Adapter

Figure 2.2: The CORBA model

In a general sense CORBA “wraps” code written in some languiaip a bundle containing
additional information on the capabilities of the code diesiand how to call it. The resulting
wrapped objects can then be called from other programs beandtwork.

CHAPTER 2. DESIGN 5

CORBA uses an interface definition language (IDL) to spettifyinterfaces that objects will
present to the world. CORBA then specifies a “mapping” from ID a specific implemen-
tation language like C++ or Java. This mapping preciselyciiess how the CORBA data
types are to be used in both client and server implemengation

2.1.3 Microsoft DCOM

The Distributed Component Object Modd)COM, [4, 5, 6, 8]) is Microsoft's solution for
supporting distributed computing with objects and is aresion of theComponent Object
Model (COM). DCOM was a major competitor to CORBA, but has been eeged in favor
of Microsoft .NET, which will not be discussed further here.

N
Proxy stub
Object tu

. J

(I
Client] Component

(. J

DCOM
Network
Protocol

I
CoCreatelnstance

I
CoCreatelnstance

(Remote) Activation

Figure 2.3: Microsoft DCOM

The COM libraries look up the appropriate binary (dynanmg-library or executable) in the

system registry, create the object, and return an integatgger to the caller.

For DCOM, the object creation mechanism in the COM libraisesnhanced to allow object
creation on other machines. In order to be able to create atecabject, the COM libraries

need to know the network name of the server. Once the servee aad the Class Identifier
(CLSID) are known, a portion of the COM libraries called teevsce control manager (SCM)

on the client machine connects to the SCM on the server ma@nd requests creation of
this object. Like CORBA, DCOM is language independent.

6 2.2. THE EXISTING ACTIVE COMPONENT FRAMEWORK

2.2 The Existing Active Component Framework

Before we get into describing the design of the new Active Gonent framework and its
improvements, we give a quick overview of the existing asstiure. The following diagram
depicts the current Active Component framework.

4) N\ 4 N\
Client Server
Client Manager Server Manager
3
Active Component 5 _| Active Component
" (Stub) N (Logic)
< 4
Q =]
=] g HTTP
I3 g
AN J AN J

Figure 2.4: The previous Active Component framework

Upon every event from the pen, an HTTP message containingdiresponding location
coordinates is sent to iServer, which then searches fore$murce linked to this location. If
the resource is an Active Component, its logic is initiatadhe server side and its properties
are loaded from the database. The new logic subsequentils senXML representation of
itself (i.e. its properties) back to the client which indtates the matching component stub
with these properties.

The same unique identifier is used on both sides to identifAeive Component. The
corresponding class names are resolved byAittere Component Resolverhich reads the
bindings from an XML file. Bindings are tuplés= (id, logic, stub), where

id unique identifier of the Active Component
logic complete package and class name of the component’s logic
stub complete package and class name of the component’s stub

Both, stub and logic, will only stay “alive” as long as it take handle the request. In other
words, those objects are created literally with every cliBkth classes implement a specific
method which is executed as soon as they have been inidalizenost cases, the objects are
instantly terminated after the execution of this method.

2.2.1 Limitations

The following list contains some of the limitations of theising framework that we tried
to solve in this project. The subsequent section describdstail how the various problems
were approached and how the new enhanced system works.

» Active Components are isolated. They cannot communicéteesich other.

» Properties of Active Components are only provided as pdistrimgs and have to be
loaded and parsed manually by the developer.

CHAPTER 2. DESIGN 7

» Properties (and Active Components themselves) cannot He pesistent; thus Active
Components are stateless.

» Although iPaper is an important part of the framework, thévecComponents are too
tightly connected with the iPaper framework. In this respte design is not generic
enough.

» Creating a new Active Component involves small modificatiam several files dis-
tributed all over the system. There is no tool that takes ohtieese tedious but neces-
sary modifications automatically.

2.3 The Extended Active Component Framework

Essentially, the overall design of the framework has nonged much. We tried to keep
as much functionality from the original framework as poksibAlthough the modifications
are subtle, they significantly reduce the amount of necessate in both new and existing
Active Components.

In order to implement those modifications, the existing feamrk has been extended, the
class hierarchy restructured, and new types introduced.p@lckages and classes of the new
framework are described in full detail in Chapter 3.

4 N\ 4 N\
Client Server

Client Manager Server Manager

[\ multiple instances [
single instance on demand
.| Active Component

Active Component
(Stub with Schema) (Logic with Schema)

HTTP
with “RMI”

Request Sender

Static

properties | | Bindings properties | | Bindings

Static

-
c
2
()
o
)
Q
©
a

AN J AN

Figure 2.5: The extended Active Component framework

We are now going to take a closer look at the new features, bdwafits they can offer and
how they exactly work.

2.3.1 Remote Method Invocation

Similarly to Java’s RMI, we wanted to allow Active Componetd interact with other com-
ponents through a simple mechanism of remote method irneocaks explained earlier, we
were looking for a much simpler approach than the one provideRMI though. Basically,
we only wanted to allow Active Components to exchange sindalia such as integers or
strings, or to trigger (idempotent) methods. The termigglof remote method invocation
may be misleading, because it has got nothing to do with Jdlda But the fact remains that
it actually is a remote method invocation mechanism, initiated by Actieenfonents, and
delegated by the Active Component managers.

8 2.3. THE EXTENDED ACTIVE COMPONENT FRAMEWORK

Any Active Component can call a method of any other compariéittknows the name of
the method as well as the number and types of the expectethangs. Due to the distributed
architecture of the framework, Active Component stubs oawlirectly access methods of
Active Component logics (or even the objects themselves) vice versa. The delegation of
method invocations is therefore handled by the Active Camepb manager objects.

Usually, Active Components have a very short lifecycle. fides to be able to invoke remote
methods, it must be possible to load Active Components dicaiy (in case they have
not been instantiated yet), and to prevent them from beistraleed immediately after the
action event. While the Active Component manager takes aftiee dynamic component
loading, the user can specify whether the component sheuttestroyed directly in the class
implementation. This approach allows a component to dyoaligi determine whether it
needs to remain active, or whether it can be disposed of.

2.3.2 Persistent logics with a static state

The introduction of persistent logics is a direct consegaesf the remote method invocation
mechanism described above. Methods can only be invoked tveAComponents which are
currently loaded, which makes it necessary to load themmdiggdly if they are not already
running.

Furthermore, persistent components can also be used asetagors” which collect data
from other components. Imagine an interactive reservdtiom where the user can choose
between different options. Only if the user has specifiedegjliired data and selects the OK
button the request will be processed.

2.3.3 Global properties

If the developer does not intend to make an Active Comporogit persistent, but still wants
to allow different components to share common values, glotmperties can be used instead.
Global properties can be set and read by any Active Comporidray will be available as
long as the system is running, unless they are explicitehoked by an Active Component.
Global properties are a very quick and simple way to shara alatong Active Components,
but there are also some limitations. For instance, Activen@anent stubs can only access
properties written by another stub, and Active Componegitkbcan only access properties
written by other logics. The properties are not shared adiwes network.

Furthermore, properties are not protected by access rightsan be read by any other com-
ponent, and they remain in memory as long as they are notcéepli removed. But these
restrictions could be eliminated in the future by introdhgcthe notion of dease(where prop-
erties are deleted automatically if they are not used foriceamount of time), as well as
assigning owners to the properties.

2.3.4 Generic Action Events instead of Pen Events

The previous version of the Active Component framework wag much focussed on iPaper-
related components. iPaper is unquestionably the mostrianggart of the framework (iPa-
per contains three times as many classes as iServer itselfjhe existing implementation
was not generic enough in terms of new application areas &ivé Components. Most
components explicitely asked forTamest anpedLocat i on (a specific type of pen events)

CHAPTER 2. DESIGN 9

and aBuf f er edl nput Reader (for input devices such as a digital pen or a mouse) to perform
their tasks. We therefore introduced a generic classonEvent , from which future events
should inherit. The generic action event allows the dewaldp design components that are
not directly related with iPaper but still want to make usection events.

2.3.5 Multiple stubs running at the same time

Sometimes, Active Components need more time to performtidmehs than the user is willing

to wait. Instead of one single stub handling all action eseanh idle stub from a stub pool

could be selected. The stub manager keeps a list of all A€ivaponent stubs of the same
type and takes care of the stub selection.

2.3.6 Simplified design process with authoring tools

In order to put a new Active Component into operation, it is sufficient to just write a new
class. Instead, several files have to be coordinated pyogdrbve all, the Active Component
schema has to be defined and the bindings have to be enteoetiénglobal binding table.
It gets even worse if components are renamed or deletedhwhit lead to unused files and
obsolete links.

Since the authoring tool is an essential part of this progcomprehensive documentation
can be found in Chapter 4.

10

2.3. THE EXTENDED ACTIVE COMPONENT FRAMEWORK

Implementation

In Chapter 2 we have seen the new concepts of the extendaeAdimponent framework. In
this chapter we are going to take a closer look at how they &ettglly been implemented. A
selection of books and websites was used as primary Javeapnagng references [9, 10, 11].

3.1 Package Structure

The following packages have been either added or extegsivetlified during the develop-
ment process:

1. org. ximtec.iserver. activeconponent
2. org.xintec.iserver.activeconponent.schema
3. org.xintec.iserver.activeconponent.event

4. org. xintec.iserver. authoring.

(1) contains abstract classes for Active Components antvé@omponent managers, as
well as concrete base classes for Active Component stgiisgl@and their corresponding
managers. It also contains the identifier resolver and thditg manager. (2) contains the
schema for Active Components as well as three classes usathémas: a method repre-
sentation, a property representation, and a type repeggan{for types like integer, string,
etc.), which are all described in the next section. (3) dosta generic base type for action
events, which replaces the old iPaper-spe&énEventand provides a more general approach
for event handling. Finally, (4) and all its subpackagestaionclasses of the authoring tool
described in Chapter 4, including all the GUI classes.

n

12 3.2. THE CLASSES

3.2 The Classes

Although the class hierarchy (Figure 3.1) did not changallgt the implementation of some
classes has been completely altered and will be explaindétail in the following sections.

ActiveComponent
Manager
Active Component Active Component
StubManager LogicManager

Client Server

ActiveComponent

ActiveComponent ActiveComponent
iServer Stub] Logic
DefaultStub
;‘—/
C I C
B
< Custom Stubs > J { < Custom Logics > U

Figure 3.1: Class hierarchy

3.2.1 ActiveComponent

Acti veConponent IS an abstract class providing basic functionality for »etiCompo-
nents, such as accessing its own name, identifier, or pagesnethe two private methods
set Property andget Proper t y are responsible for getting and setting the componentjs-pro
erties dynamically. They are internally used to load andestioe properties and do not have
to be called explicitely by the developer. The class alswigdes a simple timeout mecha-
nism which is used by the managers (see below) to unload aaenpif it takes longer than
expected to perform its actual task.

We implementd all important Active Component behavior clisein this abstract class.
This has the advantage that developers of new Active Conmperenly need to inherit
from this base class in order to create a fully functionabgive Component, and almost
no additional code is required. There are only twmi veConponent subclasses, namely
Act i veConponent Logi ¢ andAct i veConponent St ub:

3.2.2 ActiveComponentlogic

Act i veConponent Logi ¢ represents an Active Component on the server side. Only
Act i veConponent Logi ¢ oObjects have access to the iServer database (and hence can
read or write properties). The core method of attiveConponent Logic is called

handl eAct i onRequest and takes aht t pSer vl et Request as an argument. This method can

be overridden by subclasses in order to implement the seigerfunctionality of an Active
Component.

CHAPTER 3. IMPLEMENTATION 13

The logic also has two other functionsyi t andfi ni sh, which are invoked right after a new
Active Component is initialized or before it is terminategspectively.

3.2.3 ActiveComponentStub

Act i veConponent St ub represents an Active Component on the client side. It cansked u
if the client device needs to display information to the useg. rendering a webpage or
providing audio feedback etc., or if other local computasidvave to be performed. Active
Component stubs are only created upon a request by the .s€harefore, the Active Com-
ponent logic has to send all its shared properties to thatclieor this purpose, the properties
are transformed into an XML representation using JDOM [1The stub reads the values
from this message and uses the metbedrr oper t y to initialize its fields accordingly.

The stub’s event handlenandl eEvent , is more generic than the logic’'s event handler. In
general, it is called exactly once (usually by the clientlipgion). It takes amct i onEvent
argument, which can be extended to handle almost every gysmnimaginable. In the spe-
cific case of iPaper applications, the specialized subdiagsst anpedLocat i onEvent con-
tains iPaper-specific event arguments suchm@smast anpedLocat i on (essentially a page ID
and the coordinates selected by the user) argharer edl nput Devi ce (e.g. the digital pen,
the mouse etc.).

3.2.4 ActiveComponentManager

In order to manage Active Components at runtime i veConponent Manager IS
used on the client as well as on the server side. These manager respon-
sible for creating and maintaining Active Components and rianaging their life-
cycle. The abstract clasactiveConponent Manager again has only two subclasses,
namely Act i veConponent Logi cManager, wWhich handles logic objects on the server, and
Act i veConponent St ubManager , which handles stubs on the client. The former needs an
OM Instanceo create a logic object, the latter only the correspondmg\kalue-tuples of the
logic’s public properties.

The managers are also part of the remote method invocatiohanesm. As described earlier,
they delegate method invocations from Active Componentsthier Active Components, or
to their counterparts on the client or the server side rdsde Therefore, managers provide
two different versions of the method invocation routine:

3.2.5 ActiveComponentBinding

The framework does not know which logic actually belongs toalv stub. In fact, any logic
could be used with different stubs and vice versa. Thus, sadh has to be explicitely
bound to a specific logic by the developer and every binditggged with a unique identifier
(which will be referred to as thActive Component identifierUsing a globally available list
that contains all the bindings for a specific applicatiom At i veConponent Resol ver can
then map any given identifier to the corresponding logic ob stlass name. Bindings are
stored in a simple XML file format. In order to edit the list dhdings efficiently, theActive
Component Binding Editajsee Section 4.3.1) should be used.

14 3.2. THE CLASSES

i nvokeSt ubMet hod(. . .) Invokes a method on an Active Component stub, i.e.
on the client side. If the call is made by another
Active Component stub, it will directly be redirected
to the corresponding object. If the call is made by
an Active Component logic however, the manager
will send the request to its counterpart located on
the server, which will then take care of the method
call. This remote request (as well as the method’s
return value) will be transmitted in a simple XML
representation (see Appendix B.3) via HTTP.

i nvokeLogi cMet hod(...) Works exactly likei nvokeSt ubMet hod(...), but
stub/logic and client/server are interchanged.

3.2.6 ActiveComponentSchema

Act i veConponent Schena is a new class of the Active Component framework. Schemas de-
scribe the interface of Active Components, i.e. their publioperties, methods and the re-
spective types of those entities. When logics send their Xéfiresentation to the client, only
the properties defined in the schema are transmitted, indepdy of their actual modifier.
This enables the developer to precisely define which prigizesire to be shared between stub
und logic, and which ones are only used locally.

The different entities (properties and methods) are stareal straightforward way: Both
properties and methods are stored in two separate cohsctio

Each property is represented as a tuple (id, ¢, v, r, w), where

field identifier { ava. | ang. Stri ng)

type (rg. xi nt ec. i server. acti veconponent . schema. Type)
standard value, if no value is specified in the document digfinfile
readable property can be read by a public getter method
modifiable property can be set by a public setter method

g 3 e o

Each method is represented as a tuple- (id, t,a), where

id | method identifierj(ava. | ang. St ri ng)
t | return type ¢rg. xi ntec. i server. acti veconponent . schenma. Type)
a | method arguments

Finally, arguments are represented as a list of tuples (id,¢), where againjd is the

identifier andt the type of the argument. Strictly speaking, is not required to perform
a remote method invocation, but the method identifier is ugethe Binding Editor. The
detailed XML Schema of the schema file format is given in higtB.2.

3.2.7 Schema Types

Together with schemas, special data types have been iotddas well. The goal was to
strictly separate types used in schemas from native Jaes typorder to allow interoper-

CHAPTER 3. IMPLEMENTATION 15

ability with other programming languages. Table 3.1 sholypes currently defined in the
Type class.

Schema Type | Java Type Contents

ac:string java.lang. String | string value

ac:integer int integer number
ac:double doubl e floating point number
ac:boolean bool ean boolean value

ac:date java.util.Date date and time

ac:object java.l ang. Obj ect | any object or binary data

Table 3.1: Types defined vt g. xi nt ec. i server. acti veconponent . schema. Type

3.3 Improvements and Extensions

3.3.1 Internal Property Handling

An Active Component’s properties are stored on the servpaas of strings. In the existing
framework, it was necessary to parse them manually. Thiscwabersome and error prone.
The new framework handles the parsing of properties auioatigt Developers do not have
to care about type conversion anymore—instead, the pieperan directly be accessed like
normal fields.

Property parsing is done during the instantiation of anvsc@omponent. The properties are
available as soon as the Active Component is loaded by orfeedhttive Component man-
agers. Depending on whether an Active Component logic arkaistinitiated, the properties
are read from an OMS resource on the server or parsed from dnr¥esentation of name-
value-pairs sent by the server respectively. In both cabesActive Component itself will
be looking for an appropriate class field definition usingaJaflection. If a field is indeed
declared, its appropriate value will be parsed. In orderei@inine the corresponding type
of a property, the Active Component schema (which has ajrbaén loaded at this point) is
consulted.

3.3.2 Static Logics

As explained in Section 2.3.2, static logics can be very fiaiid make a logic static, we just
need to prevent a component from being destroyed after timnam/ent.

The old framework provides a methedt Done (a member of thé\ctiveComponerntlass) to
mark an Active Component as finished and to clean up inteatalstructures. We overloaded
this method in order to provide more flexibility.

public void i sDone(bool ean keepl nMenory) { ... }

If this method is invoked with the argumentue, the component will not be destroyed, but
kept in memory for later use.

16 3.4. THE DEMO APPLICATION

3.3.3 Multiple Stubs

The stub manager can distinguish between stubs with diffayges by comparing their
identifiers, but in order to make it capable of distinguighivetween different stubs of the
same type, we need to uniquely identify every single stubounimplementation, this is
done with a simple integer value, which is incremented wittrg new stub. However, this is
not the best solution, mainly because stubs can be destatyad, time, and the index may
not be valid any more. A better solution would involve a glbbanique identifier (GUID)
associated with every active stub. This identifier is creéatben a stub is instantiated, and
the user can query the manager for a specific stub by passingigue identifier.

3.3.4 Generic Action Events

As stated in Section 2.2.1, Active Components have beeneobeth too tightly with the
iPaper framework. As itis shown in Listing 3.1, the methotheasuggests a direct connection
to pen events (which, of course, had actually been the caisé)the method arguments were
iPaper-specific. It simply was not possible to call the eventdler from a different device
other than a digital pen.

Listing 3.1: Existing signature of the pen event handler

publ i c void handl ePenEvent (Ti mest anpedLocati on | ocati on,
Buf f er edl nput Devi ce reader);

The new method signature is significantly different, butsitstill working in exactly the
same way. The method name was changed, and the argumentshaszd to a new class
Ti mest anpedAct i onEvent located inorg. xi ntec. i server. acti veconponent . event. It
is a subclass of the more general typei onEvent located inorg. xi ntec.iserver.
acti veconponent . event , which now serves as a base class for all future action evanith
require more specific parameters.

Listing 3.2: New signature of the general event handler
public void handl eEvent (Acti onEvent e);

3.4 The Demo Application

Figure 3.2: The demo application

To demonstrate the new capabilities of the Active Comporfiemhework, we consider a
simple Calculator application shown in Figure 3.2. It consists of only fourfeliént Active
Components which are described in detail in Table 3.2.

CHAPTER 3. IMPLEMENTATION 17

Active Component Description Attributes

CALC_NUMBERS Two-dimensional slider control representinglefault
the digits 0 to 9 (two cells are not used).

CALC_OPERATIONS| Two-dimensional slider control representingstatic
four basic arithmetic operations.

CALC_CLEAR Default button which will reset the calculatordefault
control.
LOGGER Logs all calculations. If the user clicks on thestatic, hidden

button “Log” (not present in the screenshaot),
the log will be read out.

Table 3.2: The demo application components

Clicking on a number will generate a remote method invocatand the selected number
will be sent to the logic of the CALADPERATIONS control. The CALEOPERATIONS
control waits until an operation is complete (i.e. the uses selected a number fikkiwed by
an operation and terminated by a second number). The CAPERATIONS logic invokes
a remote method by sending the result to the TTS engine odidm side. At the same time,
the operation will be appended to the server-side log.

This application demonstrates the Remote Method Invaeatidoth directions, as well as
static logics and static properties.

3.5 Conclusion

Itis virtually impossible to describe all modifications iatdil, because often, only a few lines
of code were modified. As stated at the beginning, we wantgdeserve the existing func-
tionality, and add some new features. Nevertheless, evérestablished base classes such
as theact i veConponent itself underwent some changes, and although this did nettittfie
classes’ general behavior, it certainly facilitated these. Let us look at the source code of a
simple Active Component to see the differences betweenxistrgy and the new framework
more clearly.

We do not comment this example (except for comments in theceotnde), because the
differences between the two versions are obvious, and datbtiescription has already been
given in this chapter. Nevertheless, it sums up most of oufifications and shows how these
features are actually used in a real Active Component.

3.5.1 Source Code Comparison

Listing 3.3: An Active Component stub written in the exigtiframework
package org. xi nt ec. i paper. newf r amewor k. st ub;

import /% ... x/

18 3.5. CONCLUSION

public class Sanpl eSt ub ext ends Defaul t Stub {
private static final String ADVICE = "Custom User Advice.";

public String getUserAdvice() ({
/!l Return user advice
return ADVI CE;

}

public void init(String servletPath, TinestanpedLocation |ocation,
Buf f er edReader reader) ({
/1 Initialize properties...

}

public void handl ePenEvent (Ti mest anpedLocati on | oc,
Buf f er edReader reader) {

/1 Note the inflexible, iPaper-specifc method signature

/1 Properties are stored in a hash map (as pairs of strings)
Rect angl e rect = new Rect angl e(

(doubl e) get Par anet er ("x"),

(doubl e) get Paranmeter("y"),

(doubl e) get Paranmet er ("wi dth"),

(doubl e) get Par amet er (" hei ght"));

doSonet hi ng(rect); //

// Term nate this stub
set Done() ;
}

public void finish() {
/1 Cean up and performlast-m nute actions
Il (restricted to the server side)

}

Listing 3.4: An Active Component stub written in the new framork
package org. xi nt ec. i paper. newf r amewor k. st ub;

import /[* ... */
public class Sanpl eSt ub ext ends Defaul t Stub {
private static final String ADVICE = "Custom User Advice.";

/1 The conponent’s properties
prot ected double x, y, w dth, height;

public String getUserAdvice() {
/!l Return user advice
return ADVI CE;

}

public voi d handl eEvent (Acti onEvent e) {
super . handl eEvent (e) ;

CHAPTER 3. IMPLEMENTATION

19

/1 Handl e the ActionEvent
Rect angl e rect = new Rectangl e(x, y, w dth, height);
doSonet hi ng(rect); //

// Term nate this stub
set Done() ;

}

public void finish() {
/1l Cean up and performlast-m nute actions,
/1 e.g. send sone text to the TTS engine (on the client)

/'l Prepare the nmethod cal |l argunent
Property[] args = new Property[] {

new Property("text ToSpeech”, Type. STRI NG ADVI CE)
i

/1 Invoke the renpte nmet hod using this argunent
Act i veConponent St ubManager. get | nst ance() .
i nvokeSt ubMet hod(" TTSEngi neSt ub", "speak", args);

20

3.5. CONCLUSION

Authoring

In the early stage of this project, the authoring applicationsisted of several independent
tools. Very soon it became clear that it was actually morsibémto integrate the tools into a
single editor—not only to speed up the development prodegsalso in anticipation of inte-
grating this application into the existing authoring taml the Active Component framework.
The authoring tool developed during this semester progeatérely the beginning of a much
more comprehensive authoring system. We will discuss thiketail in Chapter 5.1.

4.1 Documentation

In this section, we are going to explain some basic programgradbncepts used in the Active
Component framework. This should help future developersetmome acquainted with the
programming practices used in the framework. We will alspl&r how the authoring tool
can be integrated into other applications.

411 Aframework of singletons

The Active Component framework is designed in a way thatseissible to only have exactly
one instance of thact i veConponent St ubManager on the client side and, correspondingly,
exactly one instance of thact i vConponent Logi cManager on the server side. Therefore,
both classes are provided as singleton objects, and haweaodessed as follows:

/1 Inmport the ActiveConponent classes
i mport org.xintec.iserver.activeconponent. Acti veConponent St ubManager;

/1 getlnstance() will return a nanager singleton
Act i veConponent St ubManager. get | nst ance() .

21

22 4.1. DOCUMENTATION

4.1.2 Active Components are managed

Active Components are managed by their corresponding neanddpis means that Active
Components should be neither accessed directly, nor iiesissh manually. Instead, the
mechanisms described in Section 2.3 should be used (i.eteemethod invocation or static
properties).

If a reference to an Active Component object is really regplliget Act i veConponent (. . .)
can be called, which will return exactly this—assuming a porrent with the given identifier
is currently running. Otherwise, it will retumul | .

4.1.3 Location of Schemas and Bindings

Schema file names are composed of the Active Component'glaiitifier, followed by the
file extension “.acschema”, and the files are usually staneal folder namedchemaslo-
cated in theresourceddirectory of the client application, cdfomcatrespectively. Bindings
are always stored in a file named “ActiveComponents.xml'hig aforementionedesources
directory.

However, the current locations might not be appropriatéhéf tramework is executed on
systems with different configurations, and although thisdsthe case at the moment, the
user should at least be allowed to adapt these directorfeure versions of the framework.
Actually, this applies to all configuration and definitioreil A better file management could
be introduced together with the suggestions mentioned¢ticd®e5.1.5.

4.1.4 Running the Authoring Tool
Binding Editor

The binding editor can be started either by execubing. xi nt ec. i server. aut hori ng.
Aut hor i ng with the command line argumenmt ndi ng_edi t, or by direct instantiation as
shown below:

i mport org.xintec.iserver.authoring.gui.BindingListEditor;

(new Bi ndi ngLi stEditor()).setVisible(true);

Schema Editor

The schema editor can be started similarly to the bindingpedbut three arguments are
required to instantiate the object successfully:

i mport org.xintec.iserver.authoring.gui.SchemaEditor;

(new SchemaEdi t or (arg0, argl, arg2)).setVisible(true);

Argumentar go contains the schema file name (with relative or absolute)pakiere the
Active Component schema is storedg1 contains the corresponding binding data (which is
not directly available in the schema file), asdy2 contains the list of all Active Component
bindings (as it is used for instance in the binding editofe Third argument could actually
be omitted, but at the moment, it is needed by the bindingoeds$ a “callback object” in
order to update its internal list entries. This could catiabe simplified in the future.

CHAPTER 4. AUTHORING

4.1.5 Visual Editor

To facilitate the development of a graphical user interfadeclipse, theEclipse Visual Editor
was used to implement windows and dialog boxes based o&uiirglibrary. Although the
Visual Editor tends to create a lot of code even for small winsl, it has proven to be a
valuable tool for creating the user interface of the autigptool. However, the source code
is very likely to be refactored during the integration of tB&l into the newiServersystem

to make it more concise and independent of any third-padyalieditor.

Fle Edit Source Refactor Navigate Search Project Tomcat Rum Window Help
g | REAB | B-0-A- | EHG- & |48 [H-F =~ B | §'ava EgCusReposio... YsDebug >
X ok e~ = Fliavabrowsing [EXL &7 Team Syndhr.
=1 [this-Binding Editor™ ¥ - = — Pakette 2
=[] scontenteane Binding Editor =
=[] ritiepanel
3 LobelTite-"Edit Bindings of %™ Edit Bindings of %s
=[] sinputPanel =
2 [] LabelPane! fr—— y (2 Sining Components #
3 jlabelldentifier-Tdentfier:” || § (= JBution
%3 fLabelogic-Logie:™ Logic: | 1] [JcheckBox
o T R S St 1] | | & mtomatin
=[] frexteanel N
([[Textidentifier e AR
g JLabel
e e | | D
E dabel™ . 8 5 | B rextarea
H [jButtonBrowseStub-".” = = S (10 e
=[] uttonpanel > s wethad SEsalines B el ety Sisee Hiaieg g || S
(=3 JButtonOK-"0K" wf [st
55 JButtonCancel-"Cancel” private void initialize() { 5 3Combosox
$§ document his.setSize(571, 213); [Tiree
this.setFont(new java.awt.Font("Arial”, java.awt.Font.PLAIN, 11)); = .
this.settodal (true); Eef Tetleon BoolPene
| = — this. setlame ("EntryEditor"); [JTable
g JavaBeans £ 2 =] +this.setResizable(false); B TebleColumn
T = = this.setTitle("Binding Editor”); e
3 this. setContentPane (getIContentpane ()); %m: .
Property Value L_‘ g
background _ SystemCalorzcontral Dimension screen = Toolkit.getDefaultToolkit().getscreensize(); [] extpane
bounds oA Rectangle frame = getSounds();] EdtorPane
componentCrient UNKNOWN this.setlocation((screen.width - frame.width) / 2, (screen.height
detidliCindOpelHIDE.OHIEI 0o jTextIdentifier.setText(DEFAULT PACKAGE + DEFAULT_NEW ID);
document] tfter (2 NN
o JTextTdentifier.requestFocus();
S ire JTextIdentifier.select(DEFAULT_PACKAGE.length(), DEFAULT PACKAGE.1
font Arial, plain, 11
forpomund: oot currentDirectory = new File(System.getProperty (USER_DIRECTORY)); i 0o Contoioers
identfier dialogResult = DIALOG_RESULT_CANCEL; | |2 Sning Menus
. location 0,0 . & > [AWT Controls
| = properties 52 outine| = 13 ||Progress | Decaration Problems | Javadoc | Synchvonize | Search | Debug | EJ Consle 52 B-r3-80
§ Writable SmartInsert | 358132 InSyne.

Figure 4.1: The Eclipse Visual Editor

24 4.2. DESIGN OF THE AUTHORING TOOL

4.2 Design of the Authoring Tool

The authoring tool developed during this semester projgotis two aspects of the design of
new Active Components. On the one hand, Active Componeuiirys can be managed and
on the other hand Active Component schemas can be definedutithiting a single line of
code.

4.2.1 The Binding Editor

The main window class of the binding editor is calRuhdingListEditorand it is located in
the following package:

org. xi ntec.iserver.authoring. gui

The binding editor does not provide any command line argusneXl the settings are stored
in the local fileaut hor i ng. properti es. Currently, only three values are used by the binding
editor:

Property | Description

localDirectory local base directory of the client application
remoteDirectory | remote base directory of the server application
bindingDirectory | base directory where the list of bindings is located

The former two directories are used to store the local andeimote copy of the schema file
respectively. The binding directory defines the locatiorermehthe binding list is placed. The
default values will work fine if both client and server run &y same machine, but they need
to be adjusted if the program is executed in a “real” distabduenvironment.

If the property file does not exist (e.g. if the editor is exedufor the first time), a dialog
will be displayed and the user is asked to confirm the defaitings. This dialog is also
accessible from the binding editor's menu for later changes

The binding editor loads the list of Active Component birgdirfrom an XML file called
Act i veConponent s. xn (for the XML schema see Listing B.1). The parsed entries iared

in ActiveComponentsDocumemthich extends thébstractTableModetlass. This makes it
very easy to add, remove and edit entries, to sort them anidptag the data in a standard
JTablecomponent.

The binding information for every Active Component can bieesd using th&indingEditor
class, which provides three simple text fields to specify ihmling attributes (identifier,
stub, logic). All text fields are checked against some raget@ressions to prevent the user
from entering invalid data (e.g. all values should starthvat letter and must not contain
spaces). A simplified auto-completion looks for similar lggge names as the user is typing
and automatically inserts the appropriate text. It is alsssfble to directly select an existing
class file, from which the correct package and class nametriaoted by reflection. At the
moment, this feature is rarely used, because the class fdegsaally generatedfter the
binding entry. However, this could change in the future Seetion 5.1.5).

CHAPTER 4. AUTHORING 25

4.2.2 The Schema Editor

The schema editor could actually be executed as a stand-algplication, but because the
schemas are dependent on the binding information and visa,vis has to be instantiated
with the following three parameters:

Par ameter | Description

String complete path and file name of the schema file
ActiveComponentBinding | the corresponding binding= (id, stub, logic)
ActiveComponentsDocumentthe complete binding list

The schema editor displays the interface of an Active Corapirtonsisting of public prop-
erties and methods. Two additional dialogs are used to dsfame. Like the binding informa-
tion, an Active Component schema is also stored in an XML @itee(per Active Component,

for the XML schema see Listing B.2). However, during runtjitiee schema is represented by
the classActiveComponentSchemahis class is also responsible for generating Java source
code @et St ubJavaCode() andget Logi cJavaCode()).

26 4.3. AUTHORING TOOL MANUAL

4.3 Authoring Tool Manual

This section explains how the authoring tool is used. Algiothe interface is straightfor-
ward, some of the input fields need some further explanation.

4.3.1 Maintaining Bindings

In order to start thé\ctive Component Binding Editathe classwut hor i ng from the package
org. xi nt ec. i server. aut hori ng has to be executed with the argumenitdi ng_edi t. The
Binding Editor is loaded and a list of all available bindirigglisplayed.

== Binding List Editor
File Edt Tools Help

MR _SELECTOR

LItk _CAPTURED_MOTE
CREATE_RECTAMGLE
CREATE_CIRCLE
CREATE_POLY G0N
ARMOTATE_SHAPE
CREATE_AMMOTATICON
PAPERPOIMT _CORTROL

org xirrtec ipaper activecompone...

org.xirtec ipaper activecompone. ..

org.xirmtec ipaper authoring.active. ..
org.xirmtec ipaper authoring.active. ..
org.xirmtec ipaper authoring.active. ..
org.xirmtec ipaper authoring.active. ..

org.xirmtec ipaper authoring.active. ..

org.xirtec ipaper activecompone. ..

AR NS ==

Identifier Logic Stub

CAPTURE_MOTE org.xirrtec ipaper activecompone... org.xirtec ipaper activecompone...
RATING org xirrtec ipaper activecompone... org.xirtec ipaper activecompone...
LOCATE org xirrtec ipaper activecompone... oy xirtec ipaper activecompone...

org ximtec ipaper activecompone. .
org.ximtec ipaper activecampone. ..
org.ximtec ipaper authoring.activ. ..
org.ximtec ipaper authoring.activ. ..
org.ximtec ipaper authoring.activ. ..
org.ximtec ipaper authoring.activ. ..
org.ximtec ipaper authoring.activ. ..

org.ximtec ipaper activecampone. ..

Figure 4.2: The Active Component Binding Editor

In case no components have been defined yet, the list will jgyenNew entries can be

created at any time by simply clicking theD& ENTRY button in the toolbar or selecting

ADD ENTRY from the EDIT menu.

In the following window, three different properties can befided. Make sure you enter
framework-compliant values (for details see Table 4.1).

Note that only alphanumeric characters are allowed andathatlues must start with an

alphabetic character. Package paths can contain dotshandentifier may contain one or
more underscores. The input is automatically checked agtiase rules.

The Binding Editor helps in defining new bindings even quickes soon as you start typing,

the editor looks for similar entries in the table and suggasnhatching value using autocom-
pletion. If you do not know the exact package path or nameehtéw component, you can
browse for the corresponding class file—the rest is done &tlitor. This feature assumes
an existing (and compiled) component class though, whiesymably will not be at hand,

CHAPTER 4. AUTHORING 27

Binding Editor %]

Edit Bindings for MY_COMPOMNENT

lclertifier: | org.ximtec ipaper MY _COMPOMENT |

Logic: |org.ximtec.ipaper.|n'g.rapplication.M'g.rLogic | []

Stulby: | org.ximtec ipaper myapplication My Stub |

[QK l [Cancel]

Figure 4.3: A binding is edited

value description

identifier | a unique identifier for the component, usually composed efgdckage path
of your application’s components and a proper name (prifigia uppercase),
€.g.org. xi nt ec. i paper. nyappl i cati on. My_COVPONENT

stub the full name of the stub class name, including its absolatek@ge path,
e.g.org. xi nt ec. i paper. nyapplication.stub. MySt ub

logic the full name of the logic class name, including its absoh#ekage path,
e.g.org. xi nt ec. i paper. nyapplication.|ogic. MLogi c

Table 4.1: Naming conventions for Active Component binding

28 4.3. AUTHORING TOOL MANUAL

since it is the purpose of the Schema Editor to define compsméter their binding entry
has been entered.

Note that some of the list entries may be displayed in reds Teans that for this particular
binding, no schema has been specified yet.

4.3.2 Editing Schemas

If you want to define or modify the schema of an Active Compandnuble-click on the
corresponding binding entry, or selecblE SCHEMA from the EDIT menu. The Schema
Editor will be opened.

£ Active Component Schema Editor

File Edit
Identifier: | RATING |
Stub; | arg.ximkec.ipaper, activecomponent, logic,. R atingStub |
Logic: | arg.ximkec.ipaper. activecomponent, stub, R ating |
User Advice: | Rate this article! |

25 Interface Definition

ElL_‘; Properties

. L% aciinteger endValue
-2 ac:boolean inverted
-] aciskring orientation

+-=a aciinteger stepsize

— ac:integer startValue
EIL_‘; Methods
- &) ac:string toString()

(a8] ’ Cancel

Figure 4.4: The Active Component Schema Editor

Beside attributes like identifier, stub and logic, the Schétditor allows you to define prop-
erties and methods of an Active Component. The interfaceagtforward, and you should
be able to define your first Active Component schema with ease.

Remember that you only need to define properties which habe tvailable on both sides
(logic and stub). Private properties that are only usedlipcan be declared directly in the
generated class files.

If the schema definition is complete, you can generate Jass ctubs for both the Active
Component logic and the Active Component stub. Sele@GE JAvA CLASS STUBS from
the HLE menu and select a folder where you want the class files to bedstdhe following
example shows two very simple class files generated by tresieditor.

CHAPTER 4. AUTHORING 29

£ Method Editor

Method Identifier: Return Type:

| add aciinkeger

S Property Editor

aciinkeger argl

Identifier: | orientation

aciinteger argl

IIE 1

Type! ac:string L Edit
Valus! | harizontal) Remove
L oK] [Cancel l [K] [Cancel]

Figure 4.5: Define properties and methods
package org. xi nt ec. i paper.acti veconponent. st ub;
import /=* ... x/
public class Sanpl eStub ext ends Defaul t Stub {
private static final String ADVICE = "This_is_a_sanpl e_stub!";

protected int counter;
pr ot ect ed bool ean paused;

publ i ¢ Sanpl eSt ub(Acti veConponent resource) {
super (resource);

}

public String getUserAdvice() ({
return ADVI CE;

}
}
package org. xi ntec. i paper.acti veconponent. | ogi c;
import /* ... x/

public class Sanpl eLogi ¢ extends ActiveConponent Logi c {
private static final String ADVICE = "This_is_a_sanple_logic!";

protected int counter;
pr ot ect ed bool ean paused;

public int getCounter() {
return counter;

}

publ i ¢ Sanpl eSt ub(Acti veConponent resource) {
super (resource);

}

public String getUserAdvice() ({
return ADVI CE;
}
}

30

4.3. AUTHORING TOOL MANUAL

Conclusion and
Future Work

In this chapter, we will discuss some aspects of the Activenflanent framework which
could be improved in other semester projects, i.e. we wilskvhere the framework could
be extended, or where it should be redesigned.

5.1 Future Work

5.1.1 Eliminating Binding and Schema Duplication

As shown in Figure 2.5, the binding table which is needed na Istubs and logics to Active
Components as well as all the different schema definitios fileve to be deployed at both
the client and the server side. Synchronization is crubakause the absence of currect
and up-to-date binding information or schema definition vahder an Active Component
inoperative.

At the moment, this concern may not appear to be justifiechime Active Components are
usually designed once and remain unchanged thereafteth®aystem could be extended to
allow Active Components to be loaded or bindings to be chdmtymamically.

5.1.2 Replacing Schema Types

Active Component schemas make use of a spagigd class (see Section 3.2.6), which are
used to simplify the conversion from schema types to the Xbhmiat and vice versa. They
are also used in the remote method invocation mechanisrhdosame reason, but although
the transformation from and to XML is straightforward, thremote method call itself has
become unnecessarily complicated (method arguments bdsdonverted to Active Com-
ponent schema types). This issue should be tackled as sgmssible in order to facilitate
the RMI mechanism, probably using serialization.

31

32 5.1. FUTURE WORK

5.1.3 Documentation and Developer Manual

Although the source code of the Active Component framewsnkell-commented, there is
no reference material whatsoever describing how the sybtsto be set up or how Ac-
tive Components are actually created. As the developmetiteoauthoring tool progresses,
a documentation ought to be compiled, serving as a “manualtHe Active Component
framework.

5.1.4 Bits and Pieces

In order to set up an Active Component, several things nebeé tione:

» Define the Active Component’s interface and create cladgsstu
(using our authoring tool)

» Add a new entry to the binding list on the local and the remoi& h
(using our authoring tool as well)

» Set up an interactive iServer document (e.g. an iPaper)sheétcreate a link to the
new Active Component

» Compile and re-run the system

Some of these steps are already taken care of by our authohgothers still need to be
done manually. Furthermore, a mechanism similar to Jayaiamic class loading could be
introduced to the Active Components framework as well, ideorto dynamically integrate
new Active Components at runtime.

5.1.5 Integrated Authoring Tool and Eclipse Integration

The process of creating Active Components involves a lotooieewriting. For small com-
ponents, constant switching between the developmentaamaignt and the authoring tool for
Active Components may be tolerable to a certain extent. Bpé&ally when it comes to
reverse engineering (i.e. if the users changes the Activagooent’s interface by directly
modifying the source code), the external authoring toobisappropriate and slows down the
development process drastically. Actually, reverse eagging has not yet been taken into
account at all.

We propose that the authoring tool should be directly irattgt into the existing Eclipse IDE.
The aforementioned conversion between Active Componémrsas and the corresponding
Java source code (and vice versa) could then be done autaityaly the IDE, and we could
take advantage of its refactoring mechanisms.

iSERVER

Appendix A

Links

Properties

Users

HasPreferences l

Preferences

HasMembers l

HasTarget '

Entities

(0%)

partition

partition

|Layers|

Onlayer

(11)

CreatedBy

[individual I gro
/yl Individuals | Groups

Contains

activeComponen!

lay
Activelayers Tesourt
Selectors Resources
A
Layers

Active
Components

]
\

iPAPER

HasShapes

complexShape

Complex
Shapes

Rectangles

Shapes

‘textComp I ‘medium
Texts | Media

—]partition|

I reource] T

document

Movies

partition
m

Circles Webpages

Polygons Ellipses

Figure A.1: iServer and iPaper Object Model

33

34

Appendix B

Listing B.1: XML Schema of the Binding File Format

<xsd: schema xml ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema"
t ar get Nanespace="htt p: //ww. gl obi s. et hz. ch/i server">
<xsd: el enrent nane="acti veConponent s" >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el enrent nanme="acti veConponent" type="bi ndi ngEntryType"
m nCccur s="0" naxCOccur s="unbounded"/ >
</ xsd: el enent >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >

<xsd: conpl exType nane="bi ndi ngEnt ryType" >
<xsd: sequence>
<xsd: el ement nanme="identifier" type="xsd:string"/>
<xsd: el enent nane="stub" type="xsd:string"/>
<xsd: el ement nanme="1ogi c" type="xsd:string"/>
</ xsd: sequence>
</ xsd: conpl exType>

</ xsd: schema>

Listing B.2: XML Schema of the Schema File Format

<xsd: schema xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema"
t ar get Nanespace="htt p://ww. gl obi s. et hz. ch/i server">
<xsd: el ement nanme="acti veConponent Schema" >
<xsd: conpl exType>
<xsd: sequence>

<xsd: el ement name="identifier" type="xsd:string"/>
<xsd: el ement nane="st ubPackage" type="xsd:string"/>
<xsd: el ement nanme="| ogi cPackage" type="xsd:string"/>
<xsd: el ement nanme="super Stub" type="xsd:string"/>

35

36

<xsd: el ement nane="superLogi c" type="xsd:string"/>
<xsd: el ement nane="properties">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement nanme="property" type="propertyType"
m nCccur s="0" maxCccur s="unbounded"/ >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >
<xsd: el ement nane="net hods" >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el enent nane="net hod" type="net hodType"
m nCccur s="0" maxCccur s="unbounded"/ >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >

<xsd: conpl exType nanme="propertyType" >
<xsd: sequence>
<xsd: el ement name="identifier" type="xsd:string"/>
<xsd: el ement nane="type" type="xsd:string"/>
<xsd: el ement nanme="val ue" type="xsd:string"/>
<xsd: el ement nanme="readabl e" type="xsd: bool ean"/ >
<xsd: el ement nane="nodi fi abl e" type="xsd: bool ean"/ >
</ xsd: sequence>
</ xsd: conpl exType>

<xsd: conpl exType nane="net hodType" >
<xsd: sequence>
<xsd: el ement nane="identifier" type="xsd:string"/>
<xsd: el ement name="returnType" type="xsd:string"/>
<xsd: el ement name="ar gunent s" >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el enent name="argunent" type="propertyType"
m nQccur s="0" naxCOccur s="unbounded"/ >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >
</ xsd: sequence>
</ xsd: conpl exType>

</ xsd: schema>

Listing B.3: XML Schema of a Remote Method Invocation
<xsd: schema xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena"
t ar get Nanespace="htt p: // wwv. gl obi s. et hz. ch/i server">
<xsd: el enent name="act i veConponent Schenma" >
<xsd: conpl exType>
<xsd: sequence>

<xsd: el ement nane="cl assNane" type="xsd:string"/>

<xsd: el ement nane="net hodNane" type="xsd:string"/>

<xsd: el ement nane="ar gunents" >

APPENDIX B. APPENDIX B 37

<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement nanme="argunment" type="argunment Type"
m nCccur s="0" maxCccur s="unbounded"/ >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >

<xsd: conpl exType nanme="ar gunment Type" >
<xsd: sequence>
<xsd: el ement name="identifier" type="xsd:string"/>
<xsd: el enent name="type" type="xsd:string"/>
<xsd: el ement nanme="val ue" type="xsd:string"/>
</ xsd: sequence>
</ xsd: conpl exType>

</ xsd: schenma>

38

Acknowledgements

| would like to express my sincere thanks to my supervisogtBigner, who not only let me
take part in the PaperWorks project, but also supported rienplst during this thesis and
provided a lot of valuable information. Since this work ised on the Active Component
framework designed and developed by Philipp L. Bolliger,ould like to thank him for the
awsome work he has done during his thesis. | am also grawmfuihé great feedback that |
was given by some members of the GloblS group after my prpjextentation, which gave
me an idea about where the project could be heading in thesfutinally, | would like to
thank Prof. Moira C. Norrie for letting me participate in omieher group’s projects.

39

Bibliography

[1] Active Componentsfor iServer: In Consideration of Paper-Based Authoring
Philipp L. Bolliger (April 2005)

[2] Fundamental Conceptsfor Interactive Paper and Cross-M edia | nfor mation Spaces
Beat Signer (2005)
Dissertation ETH No. 16218, Zurich, Switzerland

[3] Paper Augmented Digital Documents
Francois Guimbretiére (July 2003)
Human-Computer Interaction Lab, University of Maryland

[4] DCOM Architecture
Markus Horstmann, Mary Kirtland (July 1997)

[5] TheDistributed Component Object Model
The Dalmatian Group, Inc.
www. dal mat i an. conmf comdcom htm

[6] Wikipedia
http://en.w ki pedi a. or g/ wi ki / CORBA
http://en.w ki pedi a. or g/ wi ki / DCOM

[7] A comparison of two competing technologies
David Reilly (2000)
www. | avacof f eebreak. comfarticl es/rm corba

[8] JavaRMI, CORBA or COM?
Prithvi Rao (November 1998)
WWW. useni x. or g/ publ i cati ons/j aval/ usi ngj aval3. ht m

[9] The Java Cookbook
lan Darwin (June 2001, O'Reilly Press)

[10] TheJava DevelopersAlmanac 1.4
Patrick Chan (March 2002)

[11] Easy Java/XML integration with JDOM
Jason Hunter, Brett McLaughlin (May 2000)
http://ww. j avawor | d. com j avawor | d/ j w- 05- 2000/ j w- 0518-j dom ht m

4

	Contents
	1 Introduction
	1.1 iPaper and iServer
	1.2 Active Components
	1.3 Motivation and Goal
	1.3.1 Active Component Intercommunication
	1.3.2 Active Component Properties
	1.3.3 Authoring Support

	2 Design
	2.1 Existing Concepts of Distributed Computing
	2.1.1 Java RMI
	2.1.2 CORBA
	2.1.3 Microsoft DCOM

	2.2 The Existing Active Component Framework
	2.2.1 Limitations

	2.3 The Extended Active Component Framework
	2.3.1 Remote Method Invocation
	2.3.2 Persistent logics with a static state
	2.3.3 Global properties
	2.3.4 Generic Action Events instead of Pen Events
	2.3.5 Multiple stubs running at the same time
	2.3.6 Simplified design process with authoring tools

	3 Implementation
	3.1 Package Structure
	3.2 The Classes
	3.2.1 ActiveComponent
	3.2.2 ActiveComponentLogic
	3.2.3 ActiveComponentStub
	3.2.4 ActiveComponentManager
	3.2.5 ActiveComponentBinding
	3.2.6 ActiveComponentSchema
	3.2.7 Schema Types

	3.3 Improvements and Extensions
	3.3.1 Internal Property Handling
	3.3.2 Static Logics
	3.3.3 Multiple Stubs
	3.3.4 Generic Action Events

	3.4 The Demo Application
	3.5 Conclusion
	3.5.1 Source Code Comparison

	4 Authoring
	4.1 Documentation
	4.1.1 A framework of singletons
	4.1.2 Active Components are managed
	4.1.3 Location of Schemas and Bindings
	4.1.4 Running the Authoring Tool
	4.1.5 Visual Editor

	4.2 Design of the Authoring Tool
	4.2.1 The Binding Editor
	4.2.2 The Schema Editor

	4.3 Authoring Tool Manual
	4.3.1 Maintaining Bindings
	4.3.2 Editing Schemas

	5 Conclusion andFuture Work
	5.1 Future Work
	5.1.1 Eliminating Binding and Schema Duplication
	5.1.2 Replacing Schema Types
	5.1.3 Documentation and Developer Manual
	5.1.4 Bits and Pieces
	5.1.5 Integrated Authoring Tool and Eclipse Integration

	A Appendix A
	B Appendix B

