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1 Introduction

There are various reasons in favour of caching and predicting the usage of in-
formation delivered on request. In-spite of continuously growing bandwidth and
shrinking latency due to technological progress, the connection enabling access to
an information system and request processing within the system still is a bottle-
neck. Moreover, since an information system is mostly shared by multiple users,
its global availability benefits from reduced access.

Prefetching and caching are obvious choices to reduce information delivery
latency caused by limited bandwidth and system resources. The information re-
quested in the immediate future can be prefetched on connection idle time while
the user is processing the previous delivery. The information likely to be requested
again can be cached in order to avoid unnecessary requests to the system.

Caching also supports offline browsing which may reduce online time and by-
pass intended or accidental disconnection.

Additionally, prefetching can be used to suggest information of interest to a
user if the prefetched items are likely to be requested next and hence reflect the
users interests. It can help to gain knowledge about the information stored in the
system, knowledge in form of link structures previously unknown but which have
come out of usage. Thus, this knowledge can be used for the evolution of the
underlying schema.

The user of an information system queries for objects containing the desired
information. Those objects can be of arbitrary information granularity, e.g. they
can contain a single phone number or they can aggregate a phone number to a
name and a birth date, representing a person. When pursuing a particular interest,
the user queries a subset of all objects specific to that interest. We refer to such
a subset as a cluster. A user usually pursues multiple interests each one of them
defining a cluster of objects. In traditional information systems, these clusters are
unknown to the system. The user has to explicitly query for each single object
of interest. We want to develop a system that recognises the user’s interest (i.e.
recognise a cluster given a member object) and that is able to find objects belonging
to a given interest (i.e. find all member objects of a cluster). Additionally, the
system should be sensitive to possible access sequences favoured by the user in
case they arise.

In this work we present a prefetcher whose predictions are based on a prob-
ability distribution function (PDF) modeling the access to objects stored in an
information system. The PDF is empirically approximated at the same time that
the information is requested. Hence, a cache using our prefetcher not only stores
the information objects most likely to be used again but also prefetches the objects
most likely to be requested given the objects accessed before. Since the cache is
bound to a given size, we are also interested in the objects with the least proba-
bility to be accessed in order to erase them from the cache. Hence, the prefetcher
also names the objects that will be accessed with the least probability given the
previous accesses. Our approach is based on the assumption that the user’s ac-
cess statistics reflect his/her interest (e.g. if a user accesses an object, he/she is
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interested in the contained information)
We use the HTTP proxy proposed in [17] in order to test our prefetcher. The

proxy is implemented such that prefetchers can easily be exchanged and hence
allow quick evaluation and comparisons of our implemented prefetcher.

We will review related work in section 2 before presenting our approach in section
3. The implementation is sketched in section 4. We present and discuss our
results in section 5 and propose future work in section 6. Appendix 7 gives a
short introduction to Bayesian probability theory (as used throughout our work).
In appendix 8 we give a quick and general introduction to Bayesian networks
followed by the API of our cache system in Appendix 9.
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2 Related Work

Since we are using belief networks to build a prefetcher, we need to consider two
research areas as related work. Firstly, we investigate applications of belief net-
works within information systems and, secondly, we give an overview of current
techniques of predictive prefetching and caching.

2.1 Belief Networks

Belief Networks have primarily been developed to model interacting and arbitrar-
ily linked random variables. Given the observed values of a subset of the variables
(evidence), the values of the remaining variables can be predicted based on their
probability given the evidence. The network models the joint probability distri-
bution (JPDF) over all variables involved (see appendix 7 for an introduction to
Bayesian probability theory). Due to their probabilistic nature, belief networks
handle uncertainty and noisiness in data well.

The two main representatives of belief networks are Markov random fields
(MRF) and Bayesian networks. MRF are undirected graphs where vertices repre-
sent random variables and the edges dependencies. The fact that one variable is
independent from all others except it’s neighbours given these neighbours (a.k.a
the Markov assumption of independence) facilitates the computation of the JPDF.

Bayesian networks were first proposed in [15]. [2] offers an overviewing in-
troduction. We give an intuitive and general introduction to Bayes networks in
appendix 8. As opposed to MRF, Bayesian networks are directed acyclic graphs
where the vertices represent the random variables and a directed edge pointing
from vertex a to vertex b can be read as ”a causes b”. As in MRF, the indepen-
dencies modeled by the graph facilitate the JPDF computation.

The first famous application of Bayesian networks is QMR-DT, a decision the-
oretic reformulation of the Quick Medical Reference (QMR) model [16]. This
network only consists of two layers, one representing (unobservable) deceases and
the other representing (observable) symptoms. The causal connections go from the
deceases to their respective symptoms (i.e. a decease causes it’s symptoms). Given
a set of observed symptoms (evidence), the network identifies the most probable
decease. Both the structure and the parameters are static and were previously
developed by experts.

The probably most widespread application of Bayesian networks is the office as-
sistant in MS Office 97 and over 30 technical support troubleshooters (The Lumiere
Project [9]). The static structure of the network contains variables representing
system events, user behaviour and intentions as well as their causal interconnec-
tion. Evidence arises as the user is using the software which allows to predict
the user’s intention. Acquiring knowledge about the user’s intention is an obvious
requirement for offering appropriate support.

[11] makes use of Bayesian networks in order to acquire knowledge about the
online audience of a particular website. In one study the structure was static and
only the parameters were learned. The network contains (unobservable) variables
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representing the user’s satisfaction, the willingness to return, the willingness to rec-
ommend the website and the image the user has of the website owning company.
The observable variables are the duration of the stay in each of the website’s sec-
tions. The causal connections go from each unobservable variable to all observable
variables. The parameters were learned using log files and represent the behaviour
of 250 users. Once the parameters were learned the network could, for example,
predict the user’s satisfaction given the duration of stay in particular sections.
In a second study, both the parameters and the causal connections were learned.
The variables similar to the first study were previously given. In both studies, the
network is used to relate predefined user variables (e.g. satisfaction, willingness to
return) to observable user behaviour and to allow conclusions based on observed
behaviour.

Markov random fields are widely used in segmentation and restoration of im-
agery [10]. Each pixel is represented by a random variable whose distribution
function models the value of a predefined feature (e.g. luminance value, color dis-
tribution). The graph contains two vertices for each pixel: one representing the
observed value and the other representing the unobservable true value (e.g. in a
distorted image, the true value of a pixel feature is it’s value in the original undis-
torted image). The assumption is that the value of a pixel is independent from all
other pixels given it’s neighbours. The neighbourhood of a pixel is represented in
the graph as the set of adjacent vertices. Both the connections and the vertices are
learned from data, and the JPDF can be used either to reconstruct and classify
an image or to recognise a feature in the image.

MRFs (as well as Bayesian networks) have also been used to implement prob-
abilistic relational models (PRM) [7]. A PRM defines a probability distribution
over a database describing the relational schema of the domain and the proba-
bilistic dependencies between the attributes. As opposed to traditional relational
models, where a type has a set of attributes and an instance of that type has a
value assigned to each attribute, in PRM attributes are assigned to a type accord-
ing to a probability distribution as well as the value of an attribute of a particular
instance.

The belief network contains vertices representing attributes and relations. The
edges represent dependencies. The structure and the parameters are learned from
the data by querying the database and using the approximation equality 12 pre-
sented in appendix 7. Hence, the schema can be computed given the data and
arising relations are used for link prediction.

PRMs have also been used for hypertext classification [8]. In this case, the
possible entities in the relational model were restricted to be either of type page
or link. The type link contains two attributes, one referring to the page containing
the link and the other referring to the page the link points to. The link is modeled
to depend on the content of both pages which is stored as a member bag of words
in the type page. Again, the parameters are learned from data, i.e. by counting the
number of times a page links to another and by using this value to approximate
the CPDF. Once the parameters have been learned, the probability of a link given
a set of observed words can be computed. The type page also contains a member
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label which is used for classification.

2.2 Predictive Prefetching and Caching

[1] offers an overview covering current prefetching techniques. Prefetching is closely
related to a wide variety of research areas such as web, database, network, data
mining and algorithmic. [19] proposes a classification scheme for web mining tech-
niques which can as well be used for prefetching techniques.

On one hand, prefetching varies depending on the kind of information that is
(pre)processed. Techniques adopted from information retrieval go as far as parsing
the content of an object in order to find similar objects. Other techniques make
use of structural information (e.g. link structures, relations) between the objects.
Finally, the usage statistics are analysed in prefetching techniques drawn from
machine learning.

On the other hand, prefetching varies according to the technique used to dis-
cover and analyse patterns. These include automatic schema evolution, clustering,
classification, sequence pattern recognition and Bayesian statistics (i.e. CPDFs).
Finally, the prediction of the object to be prefetched can be based on a single user
or averaged over multiple users.

[4] compares different data compression techniques that have been used for
prefetching. Effective data compression is achieved by encoding with few bits
data expected with high probability and with many bits data expected rarely.
The compression engine builds up a dynamic probability distribution for the data
to be compressed. For prefetching, the sequence of accessed objects is treated as a
sequence of bits to be compressed. The resulting distribution is used to determine
the object(s) with high expectancy.

[3] proposes to predict a user’s intention using naive Bayesian classifier. In a
first step features are extracted from the objects using information retrieval tech-
niques. Each object is labeled with the respective user intention. The second step
consists in learning the CPDF P (Intention|Feature) by counting. Now that the
parameters have been learned, the CPDF can be used to predict the most probable
intention given a set of observed features (e.g. features of the previously requested
object). For prefetching, the intention to be predicted is the object requested next
and thus the learned CPDF translates into P (NextRequest|FeaturesOfPreviouslyRequestedObject)

Instead of extracting features, [17] computes the CPDF
P (PredictedRequest|PreviousRequest). Hence, each request r is treated as evi-
dence to select the respective CPDF
P (PredictedRequest|PreviousRequest = r) which defines a probability for each
object in the domain of PredictedRequest. In both approaches, the CPDFs can
be approximated using batch or online learning.

The CPDF P (PredictedRequest|PreviousRequest) can be enhanced to be
conditioned on the last k requests instead of the last request only. [5] compares
various prefetching methods based on the Markov assumption of independence. A
Markov tree of depth k is proposed to comprise all CPDF based methods.
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Figure 1: Markov Tree with Depth 2 after the Sequence of Requests a,b,c,b,d,a,b,d

The main idea is that each node in the Markov tree represents a request and
counts the number of times it has been called by the user (nnode). The root node
represents the empty request. It’s children are the first requests in any sequence of
requests that have occurred. For all first requests, all requests that have appeared
as a successor are added to the set of their children. If we stop here, the resulting
Markov tree is said to be of depth k = 2. For the third request in a sequence we add
a node request2 representing it’s predecessor (the second request) to the children of
the root node and add a new node request3 to the children of request2. We proceed
accordingly for every request in the sequence: For any pair of requests following
each other in a sequence we either create the new (parent,child) pair in case this
sequence has not appeared yet or we simply increment the corresponding counters
if the nodes are already present. If the parent of a pair is already contained
in the children set of the root node but the succeeding request has never been
it’s successor before, we add the new successor to the children set of the parent
request. Figure 1 shows a Markov tree with depth k = 2 that arose from the
sequence of requests a, b, c, b, d, a, b, d. The pairs contained in that sequence are
(a, b), (b, c), (c, b), (b, d), (d, a), (a, b), (b, d).

Using the the number of times the nodes have been called we can easily compute
the CPDF P (Child|Parent) as nchild

nparent
for all children of the node contained in the

children set of the root node representing the current request. [17] then selects
the child with the maximum CPDF value. Our example sequence would yield
P (b|a) = 2

2
= 1 and P (c|b) = 1

3
= 0.33.

We can increase the depth k to have a probability distribution for each request
conditioned on it’s k predecessors. Figure 2 shows the Markov tree that has been
build after the same sequence of requests we used before. Now we can compute
P (c|a, b) = 1

2
= 0.5 or P (b|b, c) = 1

1
= 1.

A Markov tree can be seen as a Bayesian network where the structure, as well
as the CPDFs, are learned online. In this sense our approach is almost similar
to the general Markov tree with the difference that we use belief propagation in
order to compute the CPDF P (PredictedRequest|kPreviousRequests) for every
requestable object instead of only those objects for which a CPDF conditioned on
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Figure 2: Markov Tree with Depth 3 after the Sequence of Requests a,b,c,b,d,a,b,d

the currently last k requested objects exist. For example, let us assume a sequence
where the last two requests were a and b. Using the Markov tree in figure 2
for predicting the third request we only have the CPDFs P (c|a, b) and P (d|a, b).
Thus, we can only predict the likelihood of the two objects b and c. In a Bayesian
network we could compute the CPDF values conditioned on (a, b) for all objects
in the network. In the Markov tree we only have the CPDFs conditioned on (a, b),
(b, c), (b, d), (c, b) and (d, a). In a Bayesian network we can condition a probability
on an arbitrary set of objects without explicitly modeling every possible sequence
of requests.
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Figure 3: Objects Stored in an Information System

3 Our Approach

Our approach is based on CPDFs that express the likelihood of the access to an
object given the history of previous accesses. The CPDFs are computed using
belief propagation in a Bayesian network. The structure and the parameters of
the network are learned in an online manner.

The main goal of our prefetcher is to recognise groups of objects (clusters) that
are requested simultaneously when a user pursues a particular interest. When the
user requests an object of an arbitrary cluster, other member objects of the same
cluster will be prefetched. Therefore, once the cluster structure is known, we first
need to be able to recognise which cluster has an arbitrary object assigned to it
and, secondly, we need to be able to retrieve all member objects of an arbitrary
cluster. We assume that the user requests reflect his/her interests, i.e. if a user
requests a particular object, he/she is interested in it’s contained information.
The interface definition of a prefetcher restricts the available information about
the user, his/her interests and the objects stored in the information system to
access statistics: Each time the user requests an object, the prefetcher is told the
object identity of the currently requested object. Given a current request, the
prefetcher is expected to name at least one id referring to an object that

1. has been requested at least once in the past (i.e. the prefetcher knows about
the object)

2. has the highest probability of being queried by the user in his/her next
request

In other words, the access probability of an object should reflect the cluster struc-
tures. An object which is a member of the same cluster as the currently accessed
object should have a higher access expectation than an object from a different
cluster. If the currently accessed cluster contains k objects, then the k − 1 most
probable objects should amount to all members of this cluster except for the cur-
rently accessed object.
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In figure 3 example objects stored in an information system are represented as
black circles. The coloured borders denote the clusters that are unknown to the
information system and which the prefetcher should learn to recognise.

In this section we first intuitively describe the general idea of our approach
followed by a detailed description of how we use a Bayes network to perform
prefetching.

3.1 General Idea

For any sequence of requests we define ot as the currently accessed object, ot+1 as
the next requested object and o0..t as the set of all objects that have been accessed
so far including the current request for ot. O is the set of all objects contained in
the information system. Hence, O − o0..t is the set of objects that have not been
accessed so far. We use the superscript notation oi to refer to the object i. If the
currently accessed object has the id i then ot = oi.

We use the notation state(oi) = 1 to express that the object oi has been
accessed at least once before (and vice versa for state(oi) = 0). In other words:
∀oi : oi ∈ o0..t =⇒ state(oi) = 1 and ∀oi : state(oi) = 0 =⇒ oi ∈ O − o0..t.

Finally, we denote ncondition as a counter that counts the number of times
condition = true has been observed.

For each object oi we have a CPDF P (state(oi) = 1|o0..t, O − o0..t). To keep
notations short, we will write P (state(oi) = 1|o0..t) and any condition on the
states of the objects in o0..t implicitly implies the inverse state on the objects in
O− o0..t. P (state(oi) = 1|o0..t) is the probability that the object oi will be queried
in the next request given all previously accessed and unaccessed objects. In order
to fulfill the requirements stipulated above, this probability should be high if oi and
the objects in o0..t are members of the same cluster and it should be low otherwise.
We explain how we approximate this CPDF empirically such that it reflects the
clusters.

In general, a user interacts with the information system by sequentially request-
ing objects. In this section we assume that the sequence of requests is finite and
that we know when a sequence ends. We call such a finite sequence of requests a
session. Multiple sessions may follow each other but each session can clearly be de-
limited. In the next subsection we derive the computation of P (state(oi) = 1|o0..t)
assuming that the user pursues one interest per session, i.e. each object requested
within a session belongs to the same cluster. In the subsection after that we derive
the computation in case a user pursues multiple interests within a session.

3.1.1 One Interest per Session

Figure 4 shows the situation after a session. We have added the ids of the objects
written as a superscript next to the circle. The user has been interested in the topic
covered by the cluster marked red in figure 3 and requested all members. At the
end of the session we update the counters that are used to compute P (state(oi) =
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Figure 4: Objects accessed within one session. The user pursues only one interest
per session. The objects in black have been accessed. The numbers denote the
object ids.

1|o0..t, O − o0..t) for each object oi. Using equation 12 defined in appendix 7, the
CPDF of oi can be written as

P (state(oi)|o0..t) =
nstate(oi)=1 & ∀ oj∈o0..t:state(oj)=1

n∀ oj∈o0..t:state(oj)=1

(1)

nstate(oi)=1 & ∀ oj∈o0..t:state(oj)=1 is the number of times that oi has been accessed
while all previously accessed objects in o0..t were marked as accessed simultane-
ously. n∀ oj∈o0..t:state(oj )=1 is the number of times that all objects in o0..t were marked
as accessed simultaneously. Each object has a counter for all possible combinations
of states every other object may be in. In our example we have eleven objects each
one of them able to be in two different states (accessed and not accessed, 0 and
1). Hence, every object has 211−1 counters, each counting the number of times the
combination of states particular to that counter has occurred.

For all objects in our example information system, the counter nstate(o1..4)=1 & state(o5..11)=0

is increased. As a result of this increment, P (state(oi) = 1|state(o1..4) = 1 & state(o5..11 =
0) will be higher for all oi ∈ red cluster than for the members of other clusters.
This is due to the fact that for any member oi of the red cluster, P (state(oi) =
1|state(o1..4) = 1) has increased while for the members oj of all other clusters the
increment of the counter increased P (state(oj) = 0|state(o1..4) = 1). Since

P (state(oj) = 1|state(o1..4) = 1 − P (state(oj) = 1|state(o1..4) (2)

the increment actually decreased P (state(oj) = 1|state(o1..4).
This means that anytime members of the red clusters are marked as accessed,

the CPDF of any other member of the same cluster will be higher than the CPDF
of the members of all other clusters. Figure 5 shows the access statistics at the
end of a second session. At the end of the previous session, the states of all
objects have been reset to zero. This time the user queried the objects of the
blue cluster. Proceeding as before to update the CPDFs of all objects we can now
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Figure 5: Objects accessed within one session. The user pursues one interest per
session. The objects in black have been accessed.

Figure 6: Objects accessed within one session. The user pursues multiple interests
per session. The objects in black have been accessed

differentiate between all three clusters. Hence, the CPDFs successfully reflect the
cluster structure induced by the user’s interest.

3.1.2 Multiple Interests per Session

Figure 6 shows the states of the objects in our example information system after
one session in which the user pursued two interests. As opposed to the previous
example the objects of two clusters have been accessed.

Just like before, we compute the CPDF P (state(oi) = 1|o0..t) of all objects oi

by counting. This time, this will not only increase the CPDFs of the objects in
the red cluster but also that of the members in the blue cluster. Therefore, these
two clusters can be differentiated from the green cluster, but they are treated as
one cluster. In this case we need more sessions.

Figure 7 shows the situation at the end of the session following the one in figure
6. Note that between the two sessions, the states of all objects have been reset
to zero. Again we update the values of all CPDFs. This time, the CPDFs of the
members of the red and green cluster are increased. We note that the CPDFs of
the objects in the red cluster have been increased twice so far. Thus, the objects
of the red cluster can now be differentiated from the ones in the blue cluster. If
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Figure 7: Objects accessed within one session. The user pursues multiple interests
per session. The objects in black have been accessed

all of the user’s interests are equally probable to be pursued within a session and
independent from each other, then the CPDFs will eventually be able to recognise
the clusters. In contrast to the single interest per session scenario, we need more
sessions in order to make the CPDFs reflect the cluster structure. It is required
that a sequence of requests induced by an interest of the user is always completely
processed within one session. There may be multiple interests per session but each
one of them must be fully processed at the end of a session when the CPDFs are
updated.

3.1.3 Midterm Conclusion

In both cases (single/multiple interest(s) per session), the CPDFs reflect the cluster
structure entailed by the users interests. If we want to recognise the user’s current
interest, we can at any time (i.e. before, within and after a session) multiply
all current CPDF values of all member objects for each cluster by each other.
The cluster with the highest probability value is the one containing the objects
satisfying the user’s current interest.

If we want to find all member objects of the cluster currently visited by the
user, we take the k objects with the current highest probability given the previously
accessed objects. We have seen before that the access to an object of an arbitrary
cluster C increases the CPDFs P (state(oi) = 1|o0..t) of all oi ∈ C while it decreases
the CPDFs of the members of all other clusters.

Using this update schema for all CPDFs in an information system spawns a
prefetcher that fulfills our requirements stipulated in the beginning of this section.
All we used is the id sequence of the accessed objects and the knowledge about the
end of each session. We needed the session delimiters in order to know when to
update the CPDFs and when to reset the states of the objects to zero. Obviously,
if all counters are increased after each request and we never reset the states, we
only gain information about which objects are never queried. All other objects
will be treated as one cluster.

The need to delimit the sessions is an unacceptable requirement since it either
requires heavy use of the information contained in the objects or additional user
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interaction and thus extensions to the interface of our prefetcher. To avoid this
dilemma, we propose some work-arrounds in section 3.2.5.

An additional detail that was implicitly imposed using the technique presented
above is that the prefetcher needs to maintain 2n−1 counters for each of the n ob-
jects contained in an information system. Obviously this requires an unreasonable
amount of storage space. This is why we decided to use Bayesian networks with
which any CPDF can be computed within reasonable computational costs.

3.2 Bayesian Networks

The main task for a Bayesian network is to model a JPDF over all involved vari-
ables so that any CPDF can be computed.

We treat state(oi) of every object as a random variable whose value can be
either observed or predicted. If an object oi has been accessed, the respective
variable is considered as evidential variable and the value state(oi) = 1 is our
evidence. The CPDFs P (oi|evidence) = P (oi|o0..t) can be computed using belief
propagation and will be used for predicting the next access.

The CPDFs required for belief propagation can be estimated by counting like
we did in section 3.1. Building up the structure (i.e. defining the dependencies)
requires some additional considerations. For belief propagation we used loopy
belief propagation [12] which is based on Pearl’s polytree algorithm [15].

In this section we present the details of using a Bayesian network for prefetching
in terms of the problems we encountered and the solutions we propose. From now
on we will use oi to denote the random variable modeling state(oi) in the network.
In the following two subsections we keep the assumption that we know when a
session ends. We then explain how our prefetcher is able to renounce assuming
explicit session delimiters in section 3.2.5.

3.2.1 Structural Learning

The structure of a Bayes network consists of variables and dependencies. The
variables can be learned in a straight forward manner: every time an object is
requested the network checks whether the respective variable is contained in the
graph or not. If it is not then it will be added and if it is the structure remains
unaffected.

In a series of n requests o1, o2, .., on we say that oi causes oi+1 for every i < n.
Hence, we always connect the currently accessed object ot to it’s predecessor ot−1.
In case ot has already been part of the network and ot−1 has been it’s predecessor
at least once before, then nothing is done. If the pair (ot, ot−1) has never appeared
in the sequence then an edge is added pointing from ot to ot−1.

The structural learning process initiated by each access ensures that the ac-
cessed object is contained in the network and that it is connected to its predecessor.
This strategy of structural learning will naturally lead to a graph structure repre-
senting the observed access sequences. Figure 8 shows an example network. For
now we ignore the nodes and edges in grey. The black nodes and edges have been
inserted to the network due to the sequence o1, o2, .., on.
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Figure 8: Example Structure of a Bayes Network

A Bayesian network is a directed acyclic graph. In order to achieve proper belief
propagation, the graph must be connected. If we have two sequences that do not
share any common request we must still connect them. We chose to have a root
node in the network which is treated as an ancestor of every first request in any
sequence. This root node does not represent any request.

We avoid creating a directed cycle whenever a variable oi is to be made depen-
dent on a variable oj by checking if oi is already an ancestor of oj. If this is the
case, the two are not connected.

3.2.2 Parameter Learning

In section 3.1 we have seen how a CPDF can be approximated empirically by means
of counting. For belief propagation we need the CPDF P (oi|parents(oi)) for every
variable in the network (the function parents(oi) returns the set of variables on
which oi is modeled to be dependent from by an edge). Usually the parents con-
tain a lot less variables than all the variables in the network. This is a significant
improvement to the technique introduced in section 3.1 which implied a complete
CPDF conditioned on all other variables for each variable. For the Bayesian net-
work every node maintains counters for every possible combination of states it’s
parents may be in. Every time a node is told to update it’s CPDF it determines
the states of it’s parents and increases the respective counter. Whenever a new
parent is added to a variable the number of counters have to be doubled.

If a variable oi does not have any parents then the belief propagation only re-
quires the prior probability distribution P (oi). Therefore, such a variable only
maintains two counters counting the number of times the variable has been ac-
cessed and the number of times it has not been accessed.
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Figure 9: Messages computed, Sent and Received during Belief Propagation

During a session, one node is set to have been accessed after each request. At
the end of a session all variables update their CPDF, i.e. they increase the counter
representing the current state of itself and its parents (if there are parents) and
the state of all variables is reset to zero.

3.2.3 Belief Propagation

In this section we give an overview of the formulae we use for belief propagation.
We have used Pearl’s polytree algorithm which was introduced in [15] to implement
loopy belief propagation. In [18] we present Pearl’s algorithm in its full details.
Loopy belief propagation is an approximate inference algorithm that has been
showed to work well for Bayesian networks with loops of arbitrary size if the
prior probabilities are not too small (small ∼ of the order of 10−3). Though,
the algorithm may oscillate between values that are uncorrelated with the correct
CPDFs [12].

p(xi|e) ∝ p(e−i |xi)p(e+
i , xi) =: λi(xi)ρi(xi) (3)

ρt
i(xi) =

∑
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p(xi|u ∪ e+
i )

p∏

j=1

ρt
Uj→Xi

(uj) (4)

λt
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λt
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(xi) (5)
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Xi→Yj
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k 6=j
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(xi) (6)

λt+1
Xi→Xi

(xi) =
∑

yj

λt
Yj

(yj)
∑

v1,...,vq

p(yj|πYi
)

q∏

k=1

ρt
Vk→Yj

(vk) (7)

The goal of belief propagation is to compute p(oi|o0..n) for every variable oi. In
the formulas above we use the notation xi to denote the ith value of the random
variable X and ei is the ith value of an evidential variable. Thus p(oi|o0..n) is
written as p(X|E). X is the random variable for which p(xi|e) is currently com-
puted, U is the set of its parents and Y is the set of its children (E is the set of
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evidential variables, all oi with state(oi) = 1 in our case). Figure 9 depicts the
family relations of a variable X.

Every node computes its λ and ρ values according to equations 4 and 5. Once
those values are computed, the node can compute the λ and ρ messages it will send
to its parents and children according to equations 6 and 7. The λ and ρ values are
a function of the λ and ρ messages received from its children and parents. Figure
9 illustrates the messages computed and the nodes they are sent to. This circular
interdependencies between the values and the messages would cause deadlock sit-
uations if the network is not a polytree and the nodes would wait for all messages
before computing the values [15]. In loopy belief propagation the messages are ini-
tialised with vectors of 1s. Thus, all messages exist from the beginning and every
value can be computed. The values and messages are computed iteratively, i.e.
with every additional message received their values converge towards a fixpoint
[12].

The algorithm stops as soon as no CPDF value P (X|E) changes by a value
greater than a margin given as a parameter.

3.2.4 Querying the Belief Network for Access Prediction

For predictive prefetching there is one very important query to the belief network:
Which is the most probable object accessed next given the previous sequence of
accesses. Since every previously requested variable has been set to accessed we
can initiate a belief propagation in order to determine the CPDF P (oi|o0..t) for
every variable oi. We then go through all CPDFs and select the k variables with
the highest probability given the evidence o0..t.

In order to keep the size of the cache smaller than its capacity, the Bayes
network is asked to return the k least probable objects. This functionality has not
been implemented in this work.

There is more information contained in the network modeling the JPDF over all
variables. Since we can compute every CPDF for any set of variables conditioned
on any other set of variables, we could look for structure within the objects in
the information system. One one hand, this structural information can be used to
maintain the Bayesian network, in particular its structure. On the other hand we
could also model the objects in the information system in terms of schema evolu-
tion. In section 6 we propose some possible usage of the structural information.

3.2.5 Special Issues on using a Bayesian Network for Prefetching

The main problem of using Bayesian networks to model a JPDF over variables
representing requests to an information system is that we do not know when a
user stops pursuing a particular interest and starts pursuing another. In section
3.1 we have shown that session delimiters are used to update the CPDFs, reset
the evidence and to treat the first request of a succeeding session as if it did not
have a predecessor.

The problem is that we do not know when a session starts or ends. Following
we enumerate the work-arrounds we used to make up for this lack of knowledge.
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• The CPDFs of every variable is updated after each request instead of at the
(unknown) end of a session.

• The evidence decays after a number k of requests instead of being reset at
the (unknown) end of a session. Hence the CPDFs P (oi|o0..t) resulting from
the belief propagation are conditioned on k variables. This corresponds to a
Markov tree with depth k as presented in section 2.

• The third issue is when to stop making a variable depend on its predecessor.
Ideally, this would be at the (unknown) end of a session. One way would be
to force a session ending after every lth request.

Another possibility is to use randomness in order to account for the un-
certainty about which object causes a current request. In section 3.2.1 we
assumed that the predecessor within a sequence of requests to cause its suc-
cessor. This does not account for the possibility that a user changes its
pursued interest within a sequence or that a request may cause multiple suc-
cessors in parallel, which still appear in a row in the sequence of requests. In
order to include those possibilities the ancestor is chosen randomly from the
d last requests plus the root node. The probabilities for the previous request,
the root node and the other d − 2 previous requests to be selected can be
set individually. This technique leads to a connected graph with the nodes
representing objects from the same cluster being strongly interconnected and
nodes form different clusters being loosely connected. Since we use random-
ness it is possible that we do not capture the true cause of a request. In
appendix 8 we stated that variables can exercise influence on each other al-
though they are not directly connected by an edge. Thus, we assume that it
is not vital to the correct representation of the JPDF in the network that we
capture all dependencies using edges. Dependencies between variables arise
even though they are not connected. In section 6 we propose to investigate
on the importance of correctly representing dependencies using connections
to the quality of the JPDF. We also propose to periodically analyse the net-
work and/or add and erase edges. That way the structure of the network
can be corrected to better capture the true dependencies.

We try both approaches (the forced session ending after every lth request
and the random ancestor selection) and discuss the results in section 5.
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+QueryStatistics(in valueDecayDelay : int, in dependencyDecayDelay : int,

in numberOfQueriesTillCut : int, in margin : double) : QueryStatistics

+currentQuery(in currentQuery : string) : void

+getPrediction() : string

+getPrediction() : Iterator

+closeSession() : void

+toString() : string

-beliefNet : BeliefNetwork

-rootNode : int

-margin : double

-oIDvariableIDMap : HashTable

-variableIDoIDMap : HashTable

-ancestorIDs : RingBuffer

-valueDecayDelay : int

-numberOfQueriesTillCut : int

-currentNumberOfQueries : int

QueryStatistics

Figure 10: The Query Statistics Class. The set and get methods for the members
are omitted.

4 Implementation

The prefetcher we presented in the previous section maintains access statistics
in order to propose objects to be prefetched. In the architecture of the HTTP
proxy server used in this work it does not prefetch objects itself. Our prefetcher
only receives the id of the currently retrieved object and returns a list of ids to
be prefetched. Further details about the architecture and workflows in the HTTP
proxy server can be looked up in [17]. In this section we present the implementation
of our prefetcher by describing the different classes and their interaction.

Throughout this section, in order to avoid name conflicts within the proxy
server framework, our prefetcher will be referred to as query statistics.

4.1 Query Statistics for Prefetching

Figure 10 shows the UML diagram of the QueryStatistics class. This class main-
tains the access statistics and returns either the id of the object with the highest
probability of being requested or a list of all known ids sorted according to their
probability of being requested. The constructor takes the following parameters:

• int valueDecay is the number of requests the state of a variable is kept as
evidence before it is reset to zero. The default value is 3. If this value is
set to 0 the state decays and reactivates automatically and randomly. We
use this behaviour for the root node in order to keep it as uninformative as
possible.

• int dependencyDecay is the number of predecessors of a variable from which
one is selected to be its cause. At every request, the current variable is mod-
eled to depend on one of these predecessors, chosen at random. If this value
is set to zero then the current variable is always connected to its immediate
predecessor. If this value is set to one then the current variable is always
connected to the root node. For all values greater than one, a parent is
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chosen at random according to the following probability distribution: with a
probability pRootNode and pMostRecentAncestor the parent is either the
root node or the immediate predecessor respectively. The other predecessors
might be chosen to be the parent with a probability of pBetween. In section
6 we propose a continuous distribution function to select the parent. These
three probabilities can be set individually. An additional boolean parameter
allows to specify whether the root node should always be kept as a potential
ancestor or if it is chucked out at the dependencyDecayth request.

By default, dependencyDecay is set to 3.

• int numberOfQueriesTillCut is the number of requests during which ev-
ery variable is made dependent from (one of) its ancestors. After every
numberOfQueriesT illCutth request all evidence is reset and the next re-
quest is treated as if it did not have any predecessor (forced cut, entails the
invocation of closeSession()). If this value is set to zero, then a cut will never
be forced. Zero is the default value.

• double margin is the terminating condition for the loopy belief propagation.
As soon as none of the CPDFs P (X|E) changes by a value greater than
margin the propagation is stopped. This value is set to 0.001 by default.

All four of those parameters can be set using the graphical user interface of the
proxy server. Besides the integer and double members to store the values received
by the constructor, we have the following private members:

• BeliefNetwork beliefNet is the Bayesian network that models the JPDF over
the states of all objects.

• HashMap oIDvariableID, variableIDoID manage the mapping from the ob-
ject id to the variable id used in the Bayesian network. In our case, the
object id is a string and the variable id is an integer number. Since the java
library class HashMap only allows the query by key and not by value, we
have to maintain two HashMap instances.

• RingBuffer ancestorIDs is a ring buffer that always contains the last dependencyDecay

accessed variable ids and the root node or simply the last accessed variable
id (depending on the value of the parameter dependencyDecay). This al-
lows to make the currently accessed variable dependent from one of the
dependencyDecay last variables or the root node, chosen at random. This
ring buffer is emptied by the method closeSession().

• int currentNumberOfQueries is a counter variable used to determine when
numberOfQueriesT illCut requests have been processed. If numberOfQueriesT illCut >

0 it is increased after each request. As soon as currentNumberOfQueries >

numberOfQueriesT illCut, closeSession() is invoked. This value is set to 1
by the method closeSession().

The interface methods used for prefetching are void currentQuery( string ),
String getPrediction() and Iterator getPrediction(int). We omit presenting the set
and get methods for the members.
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4.1.1 void currentQuery( string query )

In the following we enumerate the main processing steps invoked by a current
request.

1. If the current object has never been requested before, then a new variable is
added to the network and the variable id and object id are stored in the two
hash maps. If the current object is already in the network, then its variable
id is retrieved from the hash map oIDvariableID. In both cases we now have
a variable id representing the currently accessed object.

2. The current variable is made dependent on one of the variables stored in
the ring buffer ancestorIDs. If the value of dependencyDecay is zero, the
parent is the immediate predecessor in the sequence of queries. If the value
is greater than zero a parent is chosen at random from all variables contained
in the buffer (see description of RingBuffer member in section 4.1). If the
chosen parent does not create a directed cycle in the network the current
variable is connected to its new parent. If this would create a directed cycle,
another parent is chosen. This is repeated until a suitable parent has been
found. Then, the current variable id is added to ancestorIDs.

3. The state of the current object is set to accessed (set as evidence). The
CPDFs of all variables are updated. This possibly causes decay of the values
of variables.

4. If numberOfQueriesT illCut > 0, currentNumberOfQueries is increased
by one. If currentNumberOfQueries > numberOfQueriesT illCut (forced
cut), the method closeSession() is invoked.

4.1.2 String getPrediction() and Iterator getPrediction( int n)

First of all, this method initiates a loopy belief propagation in the Bayesian net-
work. As a result, every variable has a CPDF denoting its access probability given
all valueDecayDelay previously accessed objects.

There are two versions of this method. One returns a single object id of the
corresponding variable id with the highest CPDF value and the other returns an
Iterator pointing to the beginning of a vector containing the n object ids with the
highest CPDF values. Both of these methods can easily be extended to return the
least probable variable(s) instead.

4.2 Bayesian Network

Figure 11 shows the UML diagram for the belief network class. This class im-
plements a Bayesian network. The constructor takes one argument denoting the
number of values a variable can take up. For prefetching, the variables take the
values 0 or 1 and hence the number of values is 2. Since the Bayesian network
should not be restricted to the use of prefetching, we enable this number to be
given upon construction of an instance of this class.
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+BeliefNetwork(in numberOfValues : int) : BeliefNetwork

+setEvent(in variableID : int, in eventValue : int) : void

+updateAll() : void

+resetVariables() : void

+setAllDecayDelays(in decayDelay : int) : void

+addVariable(in resetValue : int, in decayDelay : int) : int

+makeDependency(in dependeeID : int, in dependendFromID : int) : bool

+getMAPVariableID(in eventValue : int) : int

+getSortedVariableIDs(in eventValue : int) : Vector

+getP(in variableID : int, in eventValue : int) : double

+propagate(in margin : double) : void

-initialise() : Set

-iterate(in messages : Set) : void

+toString() : string

-variables : Set

-numberOfValues : int

-nextFreeNodeID : int

BeliefNetwork

Figure 11: The Belief Network Class

A Bayesian network is defined by its structure and parameters. We implemented
a class Node which represents a variable. Every instance of this class has a set of
nodes that are its parents. It also has the CPDF which is an array of type float.
The belief network class has a set of this type of nodes which contains all nodes that
are in the network. Another member is the integer variable nextFreeNodeID. Each
time a new variable is added to the network its id is the value of nextFreeNodeID
and nextFreeNodeID is incremented. This guarantees that every variable id is
unique. For the purpose of this work we have not implemented the functionality
to delete a variable from the network.

Coming up we give a brief description of the member methods:

• void setEvent(int variableID, int eventValue) sets the value of the variable
referred to by its id to eventV alue. This is used to set evidence.

• void updateAll() invokes an update of the CPDF of every variable in the
network.

• void resetVariables() sets the value of all variables to resetV alue.

• int addVariable( int resetValue, int decayDelay ) creates a new node and adds
it to the set of all variables. The integer resetV alue is the value to which a
node will be set to when resetValues() is invoked. This value is also used in
belief propagation to determine whether a variable is considered as evidence
or not. A variable is evidence if its value is different than resetV alue. The
other argument decayDelay is the number of times update() can be called
on the node before its value is reset to resetV alue automatically.

• boolean makeDependency( int dependeeID, int dependendFromID ) creates a
dependency of the variable denoted to dependeeID from the variable referred
to by dependendFromID. If this connection does not create a directed cycle
in the network, then the latter is added to the set of parents of the former
and true is returned. If it does create a cycle then this invocation has no
effect on the network and false is returned.
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• int getMAPVariableID( int eventValue ) returns the id of the variable with
the highest probability of taking the value eventV alue given the values of
the evidential variables (i.e. argmaxX P (X = eventV alue|E = e) or, for
our prefetcher: argmaxi P (oi|o0..t)).

• vector getSortedVariableIDs( int eventValue ) returns a vector containing all
variables in the network, sorted according the values of their CPDF P (X =
eventV alue|E = e) (or, four our prefetcher: P (oi|o0..t)). This method is used
to retrieve the k most or least probable variables.

• propagate( double margin ) initiates a loopy belief propagation. It invokes
the method Set initialise() which returns a set of λ and ρ messages and
values to be computed including all messages and values each depends on.
This set is passed to void iterate( Set messages ) which iterates through the
list computing messages until all messages are computed. Then all CPDFs
P (oi|o0..t) are computed using the λ and ρ values. If no CPDF has changed
by a value greater than margin then the propagation stops. In any other
case iterate() is invoked again and the CPDFs are recomputed until the
terminating condition is established.

4.3 Belief Propagation

In section 3.2.3 we have shown that loopy belief propagation is realised with mes-
sage passing. Every node computes values as a function of messages received from
its parents and children. Once it has computed these values it computes the mes-
sages it sends to its parents and children and the values of the CPDF P (oi|o0..t).

We have implemented a class Message from which the λ and ρ messages as
well as the λ and ρ values are derived. The message class defines an abstract
method void compute() which computes its value as a function of the messages
it depends on. Therefore, the message class also defines a protected member
set of messages on which its computation depends. The method Set initialize()
instantiates all messages and values, sets the dependencies and returns a sorted
set of the messages and values that have to be computed. The set is sorted in the
sense that the iterator that is returned by the Iterator getIterator() method defined
in the Set class starts with the message that has the least messages it depends on
and ends at the message that contains the most dependencies.

The method void iterate() defined for the class BeliefNetwork iterates through
this set of messages and calls compute() on each. The method propagate() now
computes the CPDFs P (oi|o0..t) and checks for the termination condition. If it is
not fulfilled, iterate() is invoked again. If it is fulfilled the propagation comes to
an end.

4.4 Graphical User Interface

The graphical user interface (GUI) allows to interact with the proxy server. It
has been implemented in [17] and we added two panels specific to our prefetcher.
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Figure 12: The main view of the graphical user interface

Figure 13: The view on the Bayesian network
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Figure 14: The view to edit the parameters of the Bayesian network
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Figure 12 shows the main view of the proxy server GUI. The text area shows all
the requests and informs about cache hits and prefetches.

Figure 13 shows the view on the Bayesian network. The text area shows the net-
work in terms of all the variables oi and their connections. A variable is represented
by its id, the counters (introduced in section 3.1), the CPDF P (oi|parents(oi)) and
P (oi|o1..t) as well as an enumeration of its parents. So far the network is printed
in ASCII symbols only.

Figure 14 shows the view on the parameters of the Bayesian network (presented
in section 4.1). This panels allows to edit and set these parameters.
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5 Application and Results

In order to evaluate the performance of our prefetcher we decided to test it first
in an artificial environment. Testing it in a sandbox, as opposed to real world
application, simplifies the analysis of the functioning. Unfortunately our prefetcher
failed to behave as expected, which prohibits real world testing. In this section we
describe the set up of our experiments and point out possible causes of failures.
In the next section 6 we propose revisions that might lead to better results.

5.1 Sandbox Testing

The original idea for sandbox testing arose from the conclusion that the HTTP
protocol does not comply with the standard request response model of conventional
information systems. [14] proposes two models of control flow in the interaction
of user and information systems. Traditionally, the user requests for information
which triggers a response from the system (including side effects which may not
be perceivable by the user). In a second model, response may additionally be
triggered within the system itself or by other users . Hence, information may be
delivered without explicit request, a fact that accounts for the latest trends in
information engineering.

Although the HTTP protocol can be regarded as an instance of a request re-
sponse model, we want to point out another aspect of model classification. The
request to an information system usually causes a single response, whereas an
HTTP request may implicitly entail further requests and, thus, multiple responses
follow the original single request.A website for example can possibly contain files
such as style sheets, pictures and other medias which the browser requests indepen-
dently. If we want to classify the user requests in order to perform usage prediction
it is important to differentiate between the request posted by the user and the suc-
ceeding requests entailed by the first response. Since the set of objects required to
respond to one request can easily be determined without the need for probabilistic
inference we avoid burdening the belief network with implicit knowledge. Fur-
thermore, it would complicate evaluating the correct recognition of object clusters
arising from usage statistics which becomes clear in the next paragraph.

We use the RSS feed reader [6] which comes along with a HTTP server. The
server responds with an HTML site presenting the available RSS feeds as a Menu
when queried on top level. Clicking on a menu item requests the respective RSS
feed which typically consists of a short text. Thus one request does not imply
further requests and only triggers one single response. We selected three sets of
RSS feeds each representing a specific area of interest (cluster). If we would allow
implicit additional requests we would have to assign the complete set of responses
to the clusters and thus unnecessarily classify more objects.

Table 1 enumerates the objects we have selected as requestable from the RSS
feed server including the cluster they are assigned to. The numbers in brackets
label each item used to shorten references in the tex.

The user interacts with the server by first requesting the overviewing top level
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Cluster Newscast IT

Members BBC News, News Front Page (1) D-INFK News (7)
Reuters, Top News (2) D-INFK Events (8)
BBC News, World (3) D-INFK Colloquia (9)
Reuters: World (4) Wired News: Top Stories (10))
Reuters: Science (5) Slashdot (11)
BBC News, Science/Nature (6) Ars Technica PC News (12)

Table 1: Clusters of requestable objects and their members

value decay 7 3 3 5 5
dependency decay 0 3 5 3 5
forced cut 6 0 0 0 0

Table 2: Tested Combinations of Parameters

site. From there each RSS feed can be accessed with one click. Note that the
clusters proposed in table 1 are unknown to our prefetcher and are supposed to be
reflected with the CPDFs learned by the belief network. The required structure
and parameters of the network are learned based on usage statistics only.

We simulate a user that sequentially pursues his/her interest by repeatedly
clicking on items within a particular cluster before changing interest, and thus
viewing items of another cluster. An example sequence of requests could be
1, 2, 5, 4, 6, 3|9, 8, 10, 7, 12, 12 where the user was first interested in newscast and
then changed to IT news.

5.2 Test Set Up and Results

We have tested out prefetcher using various combinations of parameters and access
sequences. Table 2 summarizes the tested combinations of parameters. Each
column corresponds to a test set up. In a first test we have initiated a forced cut
after every 6th request. After each cut all values are reset, therefore the value
decay of 7 has no effect. The dependency decay value 0 entails that every request
is made dependent on its immediate predecessor only. All other columns test
the regular set up of our prefetcher where the values decay automatically and a
predecessor is chosen randomly within the dependencyDecay preceding requests.

We implemented a test class that simulates a user accessing the RSS items.
For each combination of parameters four different access sequences were simulated
(the string in italic is used as reference in figures 15 - 23):

• 3 x all, seq. The user accesses three times the members of the first two
clusters in a fixed sequence. The sequence is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12.
Note that there is no differentiation between the two clusters.

• 3 x each, seq. The user accesses all members of each cluster three times
before changing its interest (cluster). The members within a cluster are
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always accessed in a fixed order. The sequence of accesses is three times
1, 2, 3, 4, 5, 6 and then three times 7, 8, 9, 10, 11, 12.

• 3 x all, rnd. The user accesses three times the members of the first two
clusters. As opposed to the first case there is no fixed order of access - the
sequence of access is random. Note that there is no differentiation between
the clusters.

• 3 x each, rnd. The user accesses all members of each clusters three times
before changing its interest. The members of a cluster are accessed in random
order.

The cases where the user requests all items as if they belong to a single cluster
serve as a base to evaluate the effect of the clustering in the two other cases. The
functioning of our prefetcher would manifest itself if there was a difference between
accessing all items in a row and accessing the members of each cluster repeatedly
before changing the cluster.

We also tested the effect of always keeping the root node as a potential pre-
decessor as opposed to treating it as a regular predecessor and dropping it after
dependencyDecay requests. This set up yields 36 tests. For each test we have run
the user simulation 20 times before evaluating the prefetcher with the following
access sequences: The members of each cluster are accessed 10 times either in a
fixed order or randomly (corresponding to the respective test set up). Since we
test using two clusters only, the evaluation is based on 20 access sequences: the
first 10 sequences access members of the first cluster and the second the ones from
the second cluster. For each sequence we count the number of hits. A hit within
a sequence accessing a particular cluster occurs when our prefetcher proposes to
prefetch a member of this cluster. Figures 15 - 23 show the results of each test.
We have drawn a black vertical line to differentiate the sequences accessing the
first cluster (to the left of the line) from the ones accessing the second cluster (to
the right of the line).

In most test cases the hit rate for the sequences accessing the first cluster is
acceptable. But the accesses to the members of the second cluster do not show a
better hit rate than the cases where the prefetcher has been trained with accesses
not specific to any cluster. In those cases where the hit rates are similar within
both clusters (figures 17 and 19) the rates are low for both of them. The only
case where the prefetcher performs more or less successfully is where we use a
forced cut according to the number of members of the clusters (for random access
sequences only, figure 15). Since we do not want to incorporate knowledge about
session endings this set up is not an option for real world application.

Changing the values of the parameters produced little improvement in only one
case: Always using the root node as a potential predecessor in combination with
increased value and dependency decay (5 each) produced the best results only for
random access sequences (figure 23).
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Figure 15: Four tests for evaluating the prefetcher using the forced cut after every
6th request. The three numbers on top denote a row in table 2
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Figure 16: Four tests for evaluating the prefetcher with a value decay after 3
requests and a dependency decay value equal to 3. The root node is treated like
any other node.
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Figure 17: Four tests for evaluating the prefetcher with a value decay after 3
requests and a dependency decay value equal to 5. The root node is treated like
any other node.
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Figure 18: Four tests for evaluating the prefetcher with a value decay after 5
requests and a dependency decay value equal to 3. The root node is treated like
any other node.
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Figure 19: Four tests for evaluating the prefetcher with a value decay after 5
requests and a dependency decay value equal to 5. The root node is treated like
any other node.
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Figure 20: Four tests for evaluating the prefetcher with a value decay after 3
requests and a dependency decay value equal to 3. The root node is always kept
as a potential predecessor.
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Figure 21: Four tests for evaluating the prefetcher with a value decay after 3
requests and a dependency decay value equal to 5. The root node is always kept
as a potential predecessor.
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Figure 22: Four tests for evaluating the prefetcher with a value decay after 5
requests and a dependency decay value equal to 3. The root node is always kept
as a potential predecessor.
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5-5-0, Always Root Node
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Figure 23: Four tests for evaluating the prefetcher with a value decay after 5
requests and a dependency decay value equal to 5. The root node is always a
potential predecessor.

5.3 Possible Origins of Failure

We are convinced that the JPDF modeling the accesses over all objects is a power-
ful help for access prediction. Thus we believe that the problem lies in the correct
approximation of the JPDF. Following we enumerate possible causes of incorrect
JPDF approximation.

• Firstly, the belief propagation algorithm we applied produces an approxima-
tion only of the CPDFs and, secondly, it may fail to converge towards the
correct CPDF values.

• The dependencies built up during the usage of the HTTP proxy server do
not necessarily capture the true dependencies. The assumption that the
properness of the connections are not vital to the correct computation of the
CPDFs since dependencies arise between variables that are not connected
might be wrong.

• We use a value and dependency decay to avoid the necessity of knowledge
about session endings. If the dependencies modeled in the belief network are
vital to correct inference our predecessor selection mechanism might fail to
capture the true dependencies. The value decay might not correctly substi-
tute the value reset at the end of a session if the end was known.
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6 Future Work

In this section we propose future work in order to make our prefetcher work cor-
rectly on one hand and to add desirable functionality on the other hand. Since our
tests show that the current state of implementation does not function correctly
it is important to first prove whether a belief network actually works for access
prediction or not.

Following we enumerate improvements that may enable a proper functioning
of our prefetcher.

• Loopy belief propagation is an approximate inference mechanism that might
fail to converge towards the correct CPDF values. In order to find out
if the propagation algorithm is responsible for the failure we propose to
implement either an exact belief propagation algorithm or an approximative
algorithm that does not possibly converge to malicious values. Since the
exact inference is NP-complete such an algorithm might be useless for real
world application. Its sole utility would be to proof whether the propagation
is or is not responsible for the failure.

• Since we assumed that the dependencies modeled in a belief network do
not necessarily need to capture the true dependencies it is important to
investigate the importance of connections for the correct representation of
the JPDF within the network.

• An obvious approach to increase the correctness of the dependencies rep-
resented in the belief network is to periodically analyse the network. Such
an analysis could propose connections to be added or erased. The analysis
would be based on the local CPDFs that are computed by counting during
the usage of the HTTP proxy server (P (oi|parents(oi)). For every parent of
a variable we could compute a dependency index capturing the covariance
between the two. If the variables do not seem to be dependent the connection
could be removed from the network.

• So far, the parameters to the network (valueDecay, dependencyDecay and
forcedCut) were predefined. These parameters could as well be appropriated
and adapted during the usage of the proxy server. The PDF for the selection
of a predecessor could be converted into a parameter in order to incorporate
additional information available to the prefetcher (e.g. the more time elapses
between two requests the higher the probability that the second request is
connected to the root node).

• The parameter valueDecay could be replaced by two value decay parame-
ters. One could be used as before but only for the empirical learning of the
CPDFs. The other could be used for the belief propagation. Therefore, a
second ring buffer would be used to store the previous accesses. Every time
belief propagation is performed all values are reset and only the ones from
the second ring buffer are set as evidential. The effect of maintaining a differ-
ent set of evidential variables for parameter learning and belief propagation
would have to be tested.
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• If it can be proven that the belief propagation algorithm is not responsible
for the failure, we could try to recognise session delimiters. This would
require to incorporate further information into the prefetcher and hence to
expand its interface. Additional information available to the prefetcher can
be extracted by parsing the URL of the requested objects, by parsing the
information contained in the objects and by interpreting temporal properties
of accesses.

In order to extend the functionality of our prefetcher we propose the following
extensions:

• For the purpose of this work we have not implemented the ability to erase
variables in the belief network. For the purpose of maintaining the network
and keeping its size bound this would be a desirable functionality. Using this
ability the network could be analysed periodically to find variables with low
prior probability and to erase them from the network.

• The graphical user interface of the HTTP proxy server displays the belief
network only numerically. The representation of the network could be en-
hanced to graphically display the graph structure in terms of the nodes and
edges.

• The most important additional functionality would be to make use of further
inference abilities of a Bayesian network presented in appendix 8. Inference
could be used for schema evolution. A schema defines relationships within
the set of accessed objects in terms of associations and properties. Associ-
ations arising from schema evolution can be used to further improve access
prediction and to feed back information into the information system.
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7 Appendix: Bayesian Probability Theory

7.1 Probability Distribution Functions

Probabilistic reasoning is mainly based on Bayesian probability theory. The foun-
dation of Bayesian probability theory is the famous Bayesian equality:

P (A|B) =
P (B|A)P (A)

P (B)
(8)

P (A) is a probability distribution (PD) for a random variable A. P (A) contains
an entry for any state that A can be in, denoting the probability of the event that
A is in that state. In the case that A is a binary random variable A can take
the value 1 with the probability P (a = 1) and 0 with the probability P (a = 0) =
1−P (a = 1). A coin toss is a common used example for a binary random variable
where P (coin = head) = 1 − P (coin = tail) = 1

2
if the coin is fair.

P (A|B) is a conditional probability distribution (CPD) for a random variable
A given the state of another random variable B. P (A|B) is a table that contains
an entry for any possible combination of the states of A and B denoting the
probability of the event that A is in a state given that B is in a particular state.

For example let us assume that A and B are binary random variables. P (A|B)
contains the probabilities P (a = 0|b = 0), P (a = 0|b = 1), P (a = 1|b = 0) and
P (a = 1|b = 1). To illustrate this example using the coin toss from above, let us
assign to B the two possible states ’Our coin is fair’ and ’Our coin is unfair’. A

is the outcome of the tossing and can take the value ’Head’ or ’Tail’. Now the
meaning of a CPD should become clear, since we obviously want to differentiate
P (a = head|b = coin is fair) = 1

2
from P (a = head|b = coin is unfair) 6= 1

2
.

Equation 8 is the foundation of probabilistic inference and reasoning but it is
irrelevant to this work to introduce its various applications. Nevertheless, there is
one more PD that we want to introduce:

P (A, B) = P (A|B)P (B) (9)

P (A, B) is called the joint probability distribution (JPD) over the random
variables A and B. Again, P (A, B) is a table containing entries that denote the
probability of an event consisting of two particular states that A and B are in. In
contrast to the CPD P (A|B), where an entry denotes the probability of A being
in a certain state given that B is also in a certain state, the JPD P (A, B) denotes
the probability that A is in a certain state and B is in a certain state.

To continue our coin example we assume A to be the outcome of a tossing
and B the fact that our coin is or is not fair. If we know P (A|B) and P (B) we
can easily compute the JPD as P (a = i, b = j) = P (a = i|b = j)P (b = j) with
i, j = {0, 1}1. The JPD tables is the computation for any combination of i and j.
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P (A, B) can also be computed as P (B|A)P (A) which allows us to derive Equa-
tion 8 using P (A|B)P (B) = P (B|A)P (A).

The JPD can be regarded as an overall PD since it contains all the information
about any PD over any combination of random variables contained in the JPD.
We can compute the PD P (A) from P (A, B) by ’marginalisation over B’:

P (A) =
∑

B

P (A, B) (10)

Now we can compute P (B|A) = P (A,B)
P (A)

and vice versa for P (A|B). Thus, if we
know the JPD over all random variables of interest, we can compute any PD that
is required for any kind of probabilistic reasoning. On the other hand, and this is
of particular interest for belief networks, we can compute a JPD using CPDs and
PDs.

The last concept we want to introduce is the conditional independence. A con-
ditional independence statement (CIS) written as CIS(A, B|Z)is said to hold if A

and B are independent given Z. That is, P (A|B, Z) = P (A|Z) and P (A, B|Z) =
P (A|Z)P (B|Z). The main contribution of belief networks is making it possible to
take advantage of dependency structures governing over a set of random variables.
Independencies can easily be read of and used to compute a JPD with as less com-
putational effort as possible. As a very simple example, the equation P (A, B, C) =
P (A)P (B|A)P (C|A, B) simplifies to P (A, B, C) = P (A)P (B|A)P (C|A) ⇐⇒
CIS(B, C|A) holds.

7.2 Empirical approximation of PDFs

In this section we briefly describe how to approximate the PDFs using observations.
The incremental approximation of the CPDF constitutes the parameter learning of
our belief network implementation. We use the notation NGlobal to denote the total
number of observations. nP is the number of observations satisfying the condition
P . Note that A and B can also be a set of random variables which does not affect
the formulas.

P (A) = ∀a ∈ A :
nA=a

NGlobal

(11)

P (A|B) = ∀a, b ∈ A, B :
nA=a&B=b

nB=b

(12)

P (A, B) = ∀a, b ∈ A, B :
nA=a&B=b

NGlobal

(13)
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amorous goodMood

attention verbalExpression

Figure 24: Example Bayes Network with four Variables

P (attention|amorous) amorous = false amorous = true

attention = poor 0.2 0.9
attention = rich 0.8 0.1

Table 3: The CPDF P (attention|amorous)

8 Appendix: Bayesian Networks

A Bayesian network is a connected and directed acyclic graph that represents
random variables and their dependencies. A variable may be observable (e.g.
verbal expression of a person) or unobservable (e.g. mood of a person). A variable
is said to depend on another if the latter causes the former (e.g. bad mood causes
aggressive verbal expression). In the network such a dependency is represented by
a directed edge pointing from the cause to the effect. The cause is often referred
to as the parent of the effect.

The general idea of Bayesian networks is to model the JPDF over all variables
contained in the network in terms of local CPDFs. As we have derived in appendix
7, the JPDF contains all information, i.e. all possible PDFs over any subset of
the variables. The computation of a CPDF by marginalisation over the JPDF is
expensive (∈ O(2n)). The Bayesian networks allows the more efficient computation
of a CPDF by considering independencies modeled in the network [15].

A network is defined by the structure (i.e. the nodes and the causal connections
from its parents) and the parameters, i.e. a CPDF for every node with parents
(P (nodei|parents(nodei)) with parents(nodei) denoting the set of parents of nodei)
and a prior PDF for every node without parents (P (nodei)).

Once the network is set up, we can infer knowledge. Typically, a subset of
the variables is set to values that have been observed. The observed variables are
referred to as evidential variables or simply evidence. The values of interest are
the CPDFs P (v|evidentialvariables) of all the non evidential variables v. Using
belief propagation as proposed in [15] these CPDFs are computed directly using
message passing between the nodes but without explicitly computing the JPDF
and marginalisation.

We present a simple example network in order to point out the basic function-
ing of Bayesian network. We assume that a person is either in love or in a good

39



P (verbExp|amorous, am = false am = false am = true am = true

goodMood) gM = false gM = true gM = false gM = true

verbExp = normal 0.7 0.4 0.2 0.1
verbExp = friendly 0.3 0.6 0.8 0.9

Table 4: The CPDF P (verbalExpression|amorous, goodMood)

mood. Both states are modeled using two binary random variables: amorous ∈
{false, true} and goodMood ∈ {false, true}. Further variables are attention ∈
{poor, rich} and verbalExpression ∈ {normal, friendly}. The attention is mod-
eled to depend on the amorous state only, i.e. if the person is in love he pays poor
attention and vice versa. We further assume that the verbal expression depends
on both, the amorous state and the good mood. If the person is in a good mood,
his verbal expression is friendly and if the person is in love, the expression is rather
friendly as well.

So far we have defined the structure of the network in terms of it’s nodes and
dependencies. Now we need to define the parameters: The tables 3 and 4 de-
fine the CPDFs of the nodes with parents, i.e. for the variables attention and
verbalExpression. The variables amorous and goodMood require prior prob-
ability distributions. Let us define them as P (amourous = true) = 0.2 and
P (goodMood = true) = 0.7. Picture 24 shows the network. All these values could
be either set by an expert or retrieved in data by counting the corresponding events
and using the equations 11 and 12 defined in appendix 7. In our example we have
simply used some common sense.

Now that the network is fully defined, we can start collecting evidence and
run belief propagation to infer the CPDFs P (x|evidence) ∀ nodes x each time
new evidence arises. A typical inference could be that P (amorous|attention =
poor) > P (amorous), in other words, the fact (evidence) that a person pays poor
attention increases the probability that this person is in love. There are three
main probabilistic inference tasks for which a belief network is commonly used.
All share the use of CPDFs in the form of P (X|E) where E is the set of evidential
variables and X is the set of all non evidential variables.

• Belief Assessment is a query for P (Xi = xij|E). P (Xi = xij) is the prob-
ability that variable i has the jth value of its vector of possible values. In
our example such a query could be verbalised as what is the probability that
a person is in love given that he/she exhibits friendly verbal expression.

• Most Probable Explanation (MPE) seeks for the most probable values of all
non evidential variables given the evidence. This query can be formulated as
argmaxx P (X = x|E). In our example this query translates into what are
the most probable values for the variables amorous, attention and goodMood

given a friendly verbal expression.

• Maximum a Posteriori (MAP) inference is similar to MPE. The difference is
that now we are interested in the most probable values of a subset of all non

40



evidential variables. The formal query is argmaxu P (U = u|E) where U is
a subset of all non evidential variables X. If U contains one variable only,
then the respective MAP inference corresponds to a Belief Assessment.

There are some properties particular to Bayesian networks we want to point out.
In traditional logic, the implication a =⇒ b does not allow the reverse implication
b =⇒ a, hence, if b is observed we know nothing about a. In Bayesian networks,
if we have the dependency goodMood =⇒ friendlyV erbalExpression and we
observe a friendly verbal expression, the probability of a good mood increases.
This is closer to human reasoning.

If a friendly verbal expression is observed, the probability of the person being
in a good mood and being in love increases equally. Since the probability of
the person being in love has increased, the probability of the person paying poor
attention increases as well. Hence, the observation of friendly verbal expression
increases the probability of poor attention. These two variables are dependent
from each other although there is no direct dependency denoted by an edge.

The third particularity is often referred to as explaining away. We observe
that the person has a friendly verbal expression. As stated before, this increases
the chances of the person being in a good mood as well as the person being in
love. If we additionally observe that the person pays poor attention, we know that
there is love. Since this fact explains the person’s poor attention, we can drop
the explanation using the persons good mood. The fact that the person is in love
explains away that he is in a good mood and hence the probability of good mood
decreases. Again, two variables exercise influence on each other although they are
not explicitly modeled to do so by a dependency edge.
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9 Appendix: API
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