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Abstract 

Recent technological developments in the area of mobile devices in combination with the ubiquity of mobile connectivity have 
turned handheld devices into rich mobile web clients. On the other hand, we witness an increased number of web resources that 
are no longer only available in HTML but also in RDF format. In order to access relevant information in a mobile setting, we 
often want to query a subset of this large amount of heterogeneous RDF resources based on various context factors. We present a 
semantic technology-based client-side solution for efficient querying of large sets of distributed RDF sources without query 
endpoints. Our solution continuously extracts metadata from distributed RDF sources and manages this metadata in a local 
Source Index Model (SIM). When a new query has to be processed, the SIM is consulted to identify, assemble and query only 
potentially relevant resources. We do not plan to replace existing mobile query engines, but rather build on them to efficiently 
and transparently query large sets of distributed online RDF sources. The evaluation of our enhanced query handler reveals 
significant improvements in the overall query execution time based on the proposed SIM. 
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1. Introduction 

Over the past few years, we have witnessed a tremendous evolution in multifunctional mobile devices offering 
advanced hardware features (e.g. GPS or accelerometer sensors) and common software applications (e.g. personal 
organizers, web browsers or email clients). The increased availability of wireless networks in combination with 
affordable flat-rate and high-speed transmission rates for mobile phone networks resulted in a permanent mobile 
accessibility of online resources. Furthermore, mobile application developers now have the possibility to fully 
exploit the rich features offered by state-of-the-art mobile devices based on various sophisticated software 
development kits that are available for different mobile phone platforms. 

On the other hand, there has been a major effort to make existing and new data sources semantically available 
and interoperable, for example, via the Linked Dataa initiative. The increased use of RDF annotations (e.g. RDFa) 
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on websites significantly contributed to the wide availability of distributed and linked heterogeneous RDF, RDFS 
and OWL resources. According to the Yahoo! BOSS APIb, there are currently close to 955 million websites making 
use of RDFa. In various mobile application settings, the management, access and integration of local and remote 
semantic data is considered of paramount importance. Examples include context-aware semantic service discovery 
[1], semantic mobile augmented reality [2], mobile semantic personalization [3] and semantic context-aware 
systems [4]. Existing mobile applications seeking to exploit available online RDF data mostly rely on SPARQL 
query endpoints. However, in practice only major data providers offer such query endpoints and they do not provide 
a solution for application developers who would like to exploit the vast amount of small and distributed online 
RDF(S)/OWL sources. Recent mobile query engines, such as androjenac or RDF On the Go [5], minimize the need 
to outsource queries to external query endpoints by supporting the local querying of RDF(S)/OWL. These engines 
are in an early development stage, and experiments show that they are not optimized to scale with the size of the 
dataset. Moreover, they do not support the transparent querying and management of online RDF data sets. 

We present a solution to efficiently query large amounts of small and potentially linked online RDF(S)/OWL 
sources in mobile settings. The main idea is to provide a client-side query service which extracts metadata from 
RDF(S)/OWL sources and manages it in a local Source Index Model (SIM). The metadata consists of information 
about the predicates found in each source together with their subject and object types. At query execution time, our 
query handler uses the SIM to determine and filter potentially relevant sources to be queried via an existing mobile 
query engine. We do not plan to replace existing mobile query engines, but rather build on them to efficiently and 
transparently query large sets of distributed online RDF sources by automatically downloading and managing the 
relevant resources. In contrast to most existing solutions, we do not rely on query endpoints for integrating and 
querying distributed RDF sources. By ensuring that we query only relevant resources, we were able to significantly 
improve the overall query execution time. We also address computational and memory limitations of mobile devices 
by keeping the index quickly updatable and smaller than a full text index. 

Note that resources in a mobile application setting are often dynamically discovered and queried based on various 
context factors (e.g. information about services in a user’s vicinity). This implies that mobile applications will 
continuously deal with references to new resources that have to be added to the index of the underlying query 
service on-the-fly. Last but not least, to prevent a loss in query performance, we have to ensure that a mobile query 
index fits into the mobile device’s main memory and pays attention to other computational limitations. 

We start with a discussion of related work in Sect. 2 and then present the indexing of distributed online RDF 
resources via a SIM in Sect. 3. Section 4 provides a detailed description of the querying process based on the Source 
Index Model. In Sect. 5, we report on a series of experiments that have been performed to demonstrate the feasibility 
and performance of our approach. The results of the conducted experiments are discussed in Sect. 6, and concluding 
remarks are given in Sect. 7. 

2. Related Work 

Our solution uses a metadata index for the efficient querying of distributed RDF data sources by filtering non-
relevant sources. Indexes are also used in other contexts for optimizing data access. In the field of query distribution, 
a metadata index is used to divide a query into subqueries and optimize the query distribution plan. For example, 
Quilitz et. al [6] use a service description which defines the capabilities and contents of query endpoints. It contains 
information about predicates, statistical information, such as the amount of triples using a specific predicate, and 
details obtained from object analysis (e.g. all objects of a predicate starting with the letters A to D). Specific 
characteristics about the data as well as the data provider, for example join predicate selectiveness and the data 
production rate by the data provider, are used in [7] to divide a query into subqueries or so-called source queries. In 
[8], full-text indexes are applied to determine which peers contain a particular subject, predicate and object in 
Distributed Hash Table-based RDF. Additionally, statistical information, such as the frequency of triple parts in the 
dataset, is kept in order to optimize the query distribution process. Source-index hierarchies are employed in [9] to 
identify query endpoints that are relevant for a given query. They enable the identification of query endpoints that 
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can handle combinations of query triple patterns (or “paths”), and aim to reduce the number of joins on the 
individual results. We share the common goal of determining query-relevant data sources with all these approaches. 
However, since our data sources are not accessible via a query endpoint, we cannot distribute the query execution. 

In the context of query optimization, [10] uses a full-text triple index with fully indexed subjects, predicates and 
objects to enable fast retrieval of quads (subject, predicate, object and context) by trading index-space for retrieval 
time. In contrast, we try to minimize the index size since our solution is intended to be used in mobile settings and 
the index should ideally be kept in memory. A full-text index called HexaStore [11] is used on an iPad/iPhone in 
[12] to store RDF information from distributed locations in order to enable fast access to the RDF data, which needs 
to be loaded into the RDF store in advance. However, full-text indexes are storage intensive and computationally 
expensive with high update and insertion costs. They are thus not applicable in our setting, where new RDF data 
needs to be added frequently, and the index has to be small and updatable on-the-fly. 

Other approaches depend on a central query service acting as a mediator for a set of data sources [13-15]. Such a 
service receives queries, distributes them across the data sources registered with the service, and returns an 
integrated result. This solution reduces the load on the mobile device, but it is less scalable, and requires each data 
source to be registered with the central service. In recent years, there have been efforts for storing and querying 
semantic web data on mobile devices. In RDF On the Go [5] and androjena, the Jena framework and ARQ query 
engine have been adapted for mobile devices and the Android platform in particular. Our approach uses androjena to 
locally access, manipulate and query RDF data. To the best of our knowledge, no other approaches allow to 
transparently manage and query large amounts of small and distributed online RDF data sources on a mobile device. 

3. Source Index Model 

As stated earlier, our efficient query service for distributed RDF sources is based on a Source Index Model for 
filtering and assembling relevant sources at query execution time. In this section, we describe the indexing of online 
RDF sources and the construction of the SIM that is going to be used by the query handler to optimize the query 
execution as described in Sect. 4. 

The first step of our approach consists of extracting metadata from existing RDF data sources and storing it in the 
SIM as outlined in Fig. 1a. The application communicates the references of online RDF sources to be considered to 
the Source Manager (1). The Source Manager then extracts the necessary metadata (2) from these sources. The 
extracted metadata consists of the predicates together with their subject and object types. Once the metadata has 
been retrieved, it is stored in the SIM (3). Furthermore, the downloaded source is forwarded to the cache (4), where 
it is either stored or ignored based on the caching strategy. Note that in a mobile environment the Source Manager 
continuously receives new source references from the application when new data sources are discovered. This 
implies that the continuous indexing process should be efficient and impose minimal processing overhead. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 1. (a) Indexing online RDF sources                                                                   (b) Resolving a query 

The idea of minimizing the amount of sources to be queried by using a source index is also found in other 
approaches, which focus on optimizing the distribution of queries over query endpoints as mentioned in Sect. 2. 
However, in our specific setting, we aim to minimize the required storage space and computational effort to 
maintain the SIM, while optimizing the filtering of potentially relevant sources. Since RDF is a predicate-based 
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formalism, we base our approach on the presence of predicates in particular data sources similar to [6, 9]. 
Furthermore, we exploit the semantic information embedded in RDF files, namely the type of the predicate subjects 
and objects. Both RDF sources and SPARQL queries often use subject and object information to describe triples in 
more detail and to restrict triple patterns. For instance, in most of our sample queries that were used in the validation 
scenario, the subject types of the triple patterns need to be restricted, since mobile applications are only looking for 
information on certain physical entities (e.g. restaurants) in a user’s vicinity. At the same time, RDF sources 
typically specify resource type information for the contained resources. Based on these observations, we consider 
three variants of the SIM: the first variant (SIM1) stores the found predicates only. The second variant (SIM2) stores 
the predicates together with their subject types and the third variant (SIM3) manages the found predicates together 
with their subject and object types. Note that although the two latter variants store additional metadata, they still 
support queries on sources with unspecified subject and/or object types. Since each variant stores additional 
metadata, the required storage space and complexity to create and query the SIM also increases. In return, we expect 
improved filtering of relevant sources which should result in a better overall query performance for richer SIM 
variants.  

After introducing the metadata that is stored in the SIM, we now explain how to extract this information from 
online RDF sources. The Source Manager performs this extraction each time it receives a new source reference. As 
we focus on RDF documents without query endpoints, the source is downloaded and queried locally to extract the 
necessary metadata. Depending on the used SIM variant, we need to extract predicates (SIM1), predicates and their 
subject types (SIM2), or predicates and their subject and object types (SIM3). Since the three extraction queries are 
rather similar, we only show the most complex one in Listing 1. 
1 SELECT DISTINCT ?stype ?p ?otype 
2 WHERE { 
3  ?s ?p ?o . 
4 OPTIONAL {?s rdf:type ?stype} . 
5 OPTIONAL {?o rdf:type ?otype} . } 

Listing 1. Extracting predicates with their subject and object types 

The query considers all triples (line 3) with optionally specified subject types (line 4) or object types (line 5). By 
making the latter conditions optional, we ensure that predicates that do not have any specified types are still stored 
in the SIM. Listing 1 finally returns all occurring predicates along with their subject and object types (line 1). Note 
that since the size of the extracted metadata is much smaller than the source itself, our query service is able to index 
many more sources than it can locally store. 

4. Querying Distributed RDF Sources 

Once the Source Manager has indexed a number of online RDF sources, the application can execute queries over 
the combined data set of indexed sources as illustrated in Fig. 1b. The central component is the Query Handler, 
which receives incoming queries from the application (1), and handles the query by delegating specific tasks to 
specialized components. First, the query is passed to the Query Analyzer (2) which analyzes the query and extracts 
relevant metadata. The extracted query metadata corresponds to the metadata that is managed by the SIM, namely 
query predicates (SIM1) together with their subject (SIM2) and/or object types (SIM3). Based on this metadata, the 
Query Handler requests the references of potentially relevant sources from the Source Index Model (3). Note that 
this identification is done for each triple pattern; sources that contain predicates (and subject/object types) 
referenced in only one or several query triple patterns are also included in the final dataset. This ensures that queries 
that are not solvable by any single data source can potentially still be solved by a combination of data sources. 
Subsequently, the Query Handler requests the relevant sources from the Source Manager (4) which assembles them 
by either retrieving them from the cache (5) or downloading them if they are no longer in the cache (6). The filtered 
sources are integrated and returned to the Query Handler (7). Finally, the Query Handler uses the Query Engine to 
execute the query over the integrated dataset of relevant sources (8) and returns the result to the application (9).  

In the following, we describe the query analysis for the SIM3 variant in more detail. In a SPARQL query, triple 
patterns occurring in the  clause are used in the graph pattern matching process to restrict the query results. 
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Therefore, we need to examine this clause in order to identify potentially relevant sources. The  clause can 
contain regular triple patterns,  clauses,  clauses and  clauses. In the case of a regular triple 
pattern, the used predicates together with their subject and object types are extracted.  clauses are scanned for 
functions that specify a predicate, subject type or object type (e.g.  function) and these predicates and 
types are extracted as well.  clauses specify triple patterns for which query results optionally contain result 
values. We also need to consider the triple patterns from  clauses, otherwise we might not include query 
results for these triple patterns, while they would have been included if the query had been executed over the entire 
dataset. Extracting metadata from a  clause consists of recursively extracting the metadata of its subparts. 

5. Experiments 

The experiments to validate our approach have been designed to compare the three different SIM variants in 
terms of the computational overhead and storage space as well as the overall query execution time. We also compare 
our results with the case where no SIM is used, which corresponds to the “native” query performance of the 
underlying mobile query engine over the complete dataset. 

Our solution has been evaluated in the application field of context- and environment-aware mobile applications 
using the SCOUT framework [16]. SCOUT provides a conceptual and integrated view of a user’s physical 
environment (Environment Model) by combining information from a variety of online RDF(S)/OWL sources 
describing environmental entities (i.e. people, places and things) that are gradually discovered. In order to provide 
efficient query access to the Environment Model, the SCOUT framework makes use of our SIM-based query 
service. Furthermore, it acts as an application that continuously provides new source references to the Source 
Manager. SCOUT and our SIM-based query service are both based on Android OS 2.2. The androjena library is 
used to access, manipulate and query RDF data on the mobile device and persistent hash tables have been used to 
implement the SIMs. Note that since we only wanted to evaluate the effect of different SIM variants, we used a 
cache-all strategy to avoid any cache interference. 

 The experiments were performed on a Sony Ericsson Xperia X10 with 567 MB memory and a 1 GHz processor. 
The online data sources that have been discovered and downloaded to create the SIM were distributed across three 
different web servers with different response times. Their average size was 3.7KB (with a minimum size of 120 
bytes and a maximum size of 70KB). 

In order to measure the necessary time and memory space to construct and maintain the three SIM variants, we 
populated each of the three SIM variants with extracted metadata from 50, 100, 250 and 500 sources. By gradually 
increasing the amount of sources, we were able to investigate the scalability of our solution. The RDF datasets 
containing information about physical entities in a mobile user’s environment were automatically generated by using 
random resource types and properties from selected ontologies (e.g. geo, travel or SUMO vocabularies). In order to 
reflect a real-world situation, from these ontologies different properties and types reflecting the same concepts (e.g. 
absolute coordinates) were randomly used in combination with types and properties from proprietary ontologies. 

SELECT ?bLabel ?floorNr ?roomNr 
WHERE { 
 ?building rdfs:label ?bLabel . 
 ?building region:containsFloor ?floor .  
 ?floor region:floorNr ?floorNr . 
 ?floor region:containsRoom ?room . 
 ?room region:roomNr ?roomNr . 
 ?room region:housesPerson 
<http://wise.vub.ac.be/members/william/> .} 

 SELECT ?restaurant ?label ?latLong 
WHERE{ 
 ?restaurant rdf:type resto:Restaurant . 
 ?restaurant dcmi:title ?label . 
 ?restaurant geo:lat_long ?latLong . 
 ?restaurant resto:typeOfCuisine <http://gaia.fdi.ucm.es/ 
ontologies/restaurant.owl#ItalianCuisine> .} 

 

Listing 2. (a) Validation query Q1.                (b) Validation query Q2 

We extracted four types of queries from existing mobile SCOUT applications [3, 16] to evaluate the performance 
of our solution. Let us consider that a user is working with a number of mobile applications for different types of 
information requests resulting in SPARQL queries executed over the SCOUT Environment Model. A user visiting 
the first author’s university requests information about the location of William Van Woensel’s office via the 
SCOUT EmployeeFinder application, which leads to the SPARQL query Q1 shown in Listing 2a. After the meeting 
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with William, the user decides to have lunch and searches for nearby restaurants suiting his taste via the PlaceFinder 
application (query Q2 shown in Listing 2b) which finally plots the resulting information on a map. After lunch, the 
user decides to do some sightseeing in Brussels and again consults the PlaceFinder application to find different 
points-of-interest (query Q3 shown in Listing 3a). Finally, while walking through the city, the user consults the 
ProductFinder application to find some information about computer stores as reflected in query Q4 in Listing 3b. 

 
SELECT ?poi ?label ?latitude ?longitude 
WHERE { 
 ?poi rdf:type region:PointOfInterest . 
 ?poi rdfs:label ?label . 
 ?poi perv-space:latitude ?latitude . 
 ?poi perv-space:longitude ?longitude .} 

 SELECT ?shopLabel ?productLabel ?productPhoto 
WHERE { 
 ?shop rdf:type sumo:RetailStore . 
 ?shop rdfs:label ?shopLabel .  
 ?shop region:sells ?product .  
 ?product rdf:type 
<http://www.ontologyportal.org/SUMO.owl#ComputerResource> . 
 ?product dcmi:title ?productLabel .  
 OPTIONAL { 
  ?product dcmi:description ?productPhoto . 
  ?productPhoto rdf:type dcmi:StillImage . }} 

Listing 3. (a) Validation query Q3 (b) Validation query Q4. 

We first consider the overhead in size and time for creating and maintaining the SIM. Table 1a shows the total 
size in bytes of the different SIM variants for each dataset (50, 100, 250, 500 sources). We also calculated how the 
size of the different SIMs compares to the total size of the indexed sources. For the first SIM variant SIM1, the size 
amounts to 3,9% of the total size of the indexed sources. This grows to 6,9% for SIM2 and amounts to 13,5% for 
SIM3. The computational overhead to create the SIM includes the average time to download the source and the 
average time to extract and add the metadata to the SIM as highlighted in Table 1b. 

Table 1. (a) Size overhead (in bytes) for storing the SIM  (b) Computational overhead (in ms) for creating the SIM 

 

Table 2a shows the overall query resolution time, including the query analysis time, the SIM access time, the data 
collection time and the query execution time. The results are clustered according to the dataset size and each cluster 
shows the overall query resolution time in milliseconds for the different queries and SIM variants. Note that all 
execution times were obtained by performing 20 runs of each experiment and averaging the results. Last but not 
least, Table 2b shows the number of sources that were identified as relevant for each query and SIM variant. 

6. Discussion 

A first observation that we make based on the results of Sect. 5 is that the overhead for creating any SIM variant 
is relatively low and a one-time cost. The overhead increases with the complexity of the SIM, but even for the most 
complex SIM3 variant, the overhead per source is marginal (61,41ms on average) compared to the download times 
(average 790ms) or query execution times. The sources have to be downloaded before metadata can be extracted, 
but they have to be downloaded in any case (also if no SIM is used) in order to execute queries locally. The 
computationally non-intensive SIM maintenance task runs in an independent background thread and is non-
disruptive to other tasks running on the mobile device. 

A second observation concerns the size of the SIM (see Table 1a). Even for the smallest SIM, there is some 
overhead, which increases with the complexity of the SIM. Compared with the original sources, the average 
overhead is 3,9% for SIM1, 6,9% for SIM2 and 13,5% for SIM3. For comparison reasons, we constructed a full text 
hash table-based index for found RDF nodes per subject, predicate and object, which results in 70% space overhead. 

# sources SIM1 SIM2 SIM3 
50 8 984 18 955 34 026 
100 16 959 31 727 61 000 
250 43 779 71 801 155 511 
500 86 046 126 736 246 753 

  SIM1 SIM2 SIM3 
extract + add 17,37 38,22 61,41 
download 785,00      818,00 766,00 
total 802,37 856,22 827,41 
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Table 2. (a) Query resolution time (in ms) per SIM variant         (b) Number of relevant identified sources per SIM variant 

 
It is evident from Table 2a that the biggest performance gain is for SIM2 and SIM3 for queries Q2, Q3 and Q4, 

independent from the amount of sources. This was to be expected, since these are the queries and SIM variants that 
contain most semantic information. For all three SIM variants however, query Q1 reports a smaller performance 
gain, and in some cases even a performance loss. On the other hand, the performance gain for SIM1 for queries Q2, 
Q3 and Q4 is much lower than for SIM2 and SIM3 and only gets slightly better than in the case where no SIM is 
used for larger datasets (>250).  

The reason for the poor performance gain of SIM1 lies in the small amount of source metadata, which leads to 
only a limited source selectivity. The limited source selectivity and filtering of relatively small sources (average size 
of 3,7 KB) does not compensate the overhead for accessing the SIM. Since query Q1 does not specify the metadata 
contained in SIM2 and SIM3 (i.e. subject or subject/object types), SIM2 and SIM3 have a similar performance as 
SIM1 for query Q1. Additionally, for few sources (<=100), the small number of eliminated sources cannot 
compensate the overhead of accessing SIM2 and SIM3, resulting in a performance loss. It does not seem to be 
beneficial to store additional metadata for queries that provide little selectivity. 

One of the most obvious observations is the significant performance gain for queries Q2, Q3 and Q4 when using 
SIM2 or SIM3. As mentioned before, this can be explained by the fact that these three queries specify rich semantic 
information. Queries Q2, Q3 and Q4 contain subject type restrictions for each triple pattern, whereas Q4 also 
includes information on the object types. As a result, SIM2 and SIM3 perform similar for queries Q2 and Q3, since 
the extra object type metadata present in SIM3 is not usable and thus does not provide any extra source selectivity. 
However, in query Q4, the available object type information causes some extra selectivity resulting in a slight 
performance gain.  

One would expect a much better performance of SIM3 for query Q4 based on the given object type restriction. 
However, the restriction is only given for one triple pattern (and one optional pattern). As relevant sources are 
identified per triple pattern, this implies that the object type restriction is only considered when handling the triple 
pattern in question. This leads to a small difference in selectivity between SIM2 and SIM3 for this query (see Table 
2b). However, the impact on the total execution time is minimal with higher costs for maintaining the richer SIM. It 
can further be noted that the total execution time based on SIM1 is always worse for query Q4 than for queries Q2 
and Q3. This is because query Q4 contains almost double the amount of triple patterns than queries Q2 and Q3 and 
more potentially relevant sources will be returned by the SIM1. 

We can thus conclude that overall, SIM2 seems to perform best: in most cases it provides a significant query 
performance improvement over SIM1 at little extra cost. Furthermore, often it performs as good as SIM3, but at 
lower costs. However, the gain in execution time also depends on the number of sources and the query selectiveness. 
The particular use of our query service, the source content and the nature of the intended queries might influence the 
selection of a specific SIM. In our experiments, we assumed that all sources are stored on the client device (cache-

# sources  SIM1 SIM2 SIM3 no SIM 

50  

Q1 3 122 3 634 3 662 3 372 
Q2 2 487 509 462 3 302 
Q3 3 022 113 112 3 301 
Q4 3 926 288 242 3 306 

100  

Q1 6 320 8 664 8 754 6 717 
Q2 7 620 769 718 6 686 
Q3 7 189 344 407 6 697 
Q4 10 054 573 461 6 692 

250  

Q1 15 303 13 874 14 013 17 672 
Q2 11 333 2 190 2 161 17 682 
Q3 13 766 3 211 3 236 17 672 
Q4 15 957 2 858 2 637 17 593 

500  

Q1 19 976 20 377 20 465 25 575 
Q2 15 183 3 347 3 376 26 190 
Q3 20 985 5 418 5 325 26 610 
Q4 24 648 4 915 4 503 26 022 

# sources  SIM1 SIM2 SIM3 

50 

Q1 28 28 28 
Q2 24 8 8 
Q3 31 8 8 
Q4 41 8 8 

100 

Q1 48 47 48 
Q2 57 17 17 
Q3 58 17 17 
Q4 80 16 15 

250 

Q1 122 122 122 
Q2 144 40 40 
Q3 143 45 45 
Q4 206 52 46 

500 

Q1 234 234 234 
Q2 229 59 59 
Q3 269 101 101 
Q4 362 105 96 
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all strategy). However, in case there is not enough space to cache all sources, an approach without a SIM model will 
no longer work since all resources have to be present to execute a query. On the other hand, our SIM-based solution 
will still work, since we can selectively download the required resources based on the SIM metadata. Note that we 
do currently not check the freshness of data in the Source Index Model but plan to do this in the near future based on 
HTTP cache-control header fields. 

7. Conclusion 

We have presented a client-side query service for the efficient querying of distributed RDF sources in mobile 
settings. The resulting enhanced query service runs on top of arbitrary existing mobile query engines. Our solution is 
based on a continuously updated Source Index Model, which is consulted at query execution time to significantly 
reduce the number of data sources to be queried. When designing our Source Index Model, we had to find the right 
balance between the amount of stored index data and the corresponding maintenance overhead on the one hand, and 
the number of potentially filtered irrelevant data sources on the other hand. Our validation experiments highlight 
that we can achieve a significant speedup in querying distributed RDF sources, and further confirm that our solution 
scales well with a growing set of data sources. In the future we plan to incorporate strategies to ensure data 
freshness, and devise and experiment with different caching strategies. 
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